Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311779189> ?p ?o ?g. }
- W4311779189 endingPage "105659" @default.
- W4311779189 startingPage "105659" @default.
- W4311779189 abstract "As a significant extension of rough set theory, three-way decision (3WD) theory plays a crucial role in the data mining of uncertain information and decision-making analysis. Transfer learning (TL) is also a powerful knowledge discovery and deep learning strategy that has attracted the attention of many scholars. At present, many achievements have been made in related studies based on the concepts of sample transfer, feature transfer, and parameter transfer. However, there are few studies on multi-granularity fusion and TL for multisource data from the perspective of the stochastic dominance (SD) relation. In this paper, an intuitionistic fuzzy three-way transfer learning (IF3WTL) model based on rough almost stochastic dominance (RASD) is proposed. In this scenario, we first introduce the concept of a rough marginal information measure and the corresponding calculation method. Then, an RASD method is proposed to generate the multi-granularity distribution of same-category information in the source domain. In addition, 3WD theory is introduced to classify the target domain objects into positive, negative, and boundary regions based on the relation between marginal minimum risk information and the corresponding multi-granularity distribution. Furthermore, a secondary decision strategy with an SVM algorithm is implemented to iteratively process boundary region objects. The proposed method can reduce the differences in the data distribution among domains through RASD, improve noise tolerance, and obtain the degree of roughness of common information at different scales. Moreover, the proposed method adopts an iterative learning strategy, which can reduce the decision-making cost in cases with insufficient information and improve the accuracy of classification for objects in the boundary region. The rationality and effectiveness of the proposed model are verified through experiments with the ABIDE dataset and comparative analyses with the existing state-of-the-art methods." @default.
- W4311779189 created "2022-12-28" @default.
- W4311779189 creator A5018878424 @default.
- W4311779189 creator A5020049907 @default.
- W4311779189 creator A5044495947 @default.
- W4311779189 creator A5059246379 @default.
- W4311779189 creator A5065302408 @default.
- W4311779189 creator A5076777912 @default.
- W4311779189 date "2023-02-01" @default.
- W4311779189 modified "2023-10-16" @default.
- W4311779189 title "Intuitionistic fuzzy three-way transfer learning based on rough almost stochastic dominance" @default.
- W4311779189 cites W1511669739 @default.
- W4311779189 cites W1994756555 @default.
- W4311779189 cites W2001692054 @default.
- W4311779189 cites W2037316073 @default.
- W4311779189 cites W2057550180 @default.
- W4311779189 cites W2058046532 @default.
- W4311779189 cites W2070813883 @default.
- W4311779189 cites W2079767857 @default.
- W4311779189 cites W2090495936 @default.
- W4311779189 cites W2137689207 @default.
- W4311779189 cites W2339747551 @default.
- W4311779189 cites W2752558629 @default.
- W4311779189 cites W2784166218 @default.
- W4311779189 cites W2793364778 @default.
- W4311779189 cites W2809420552 @default.
- W4311779189 cites W2813852899 @default.
- W4311779189 cites W2896839832 @default.
- W4311779189 cites W2911664277 @default.
- W4311779189 cites W2955296312 @default.
- W4311779189 cites W2965581080 @default.
- W4311779189 cites W2966036416 @default.
- W4311779189 cites W2978176098 @default.
- W4311779189 cites W2978231205 @default.
- W4311779189 cites W2980272624 @default.
- W4311779189 cites W2989196101 @default.
- W4311779189 cites W2990504128 @default.
- W4311779189 cites W2991653332 @default.
- W4311779189 cites W2996241447 @default.
- W4311779189 cites W3000167727 @default.
- W4311779189 cites W3000296568 @default.
- W4311779189 cites W3002826623 @default.
- W4311779189 cites W3006993671 @default.
- W4311779189 cites W3007226770 @default.
- W4311779189 cites W3007921036 @default.
- W4311779189 cites W3012521642 @default.
- W4311779189 cites W3013707441 @default.
- W4311779189 cites W3030489213 @default.
- W4311779189 cites W3036852947 @default.
- W4311779189 cites W3041133507 @default.
- W4311779189 cites W3082803151 @default.
- W4311779189 cites W3094885270 @default.
- W4311779189 cites W3108706519 @default.
- W4311779189 cites W3113068008 @default.
- W4311779189 cites W3117059627 @default.
- W4311779189 cites W3121428746 @default.
- W4311779189 cites W3121497149 @default.
- W4311779189 cites W3123146821 @default.
- W4311779189 cites W3123411048 @default.
- W4311779189 cites W3124876186 @default.
- W4311779189 cites W3149668772 @default.
- W4311779189 cites W3156846092 @default.
- W4311779189 cites W3169610810 @default.
- W4311779189 cites W3173498505 @default.
- W4311779189 cites W3179393967 @default.
- W4311779189 cites W3180236477 @default.
- W4311779189 cites W3214549733 @default.
- W4311779189 cites W4200366637 @default.
- W4311779189 cites W4205262604 @default.
- W4311779189 cites W4205519721 @default.
- W4311779189 cites W4206007098 @default.
- W4311779189 cites W4213262105 @default.
- W4311779189 cites W4224008185 @default.
- W4311779189 cites W4255833381 @default.
- W4311779189 cites W4285253304 @default.
- W4311779189 cites W4292078529 @default.
- W4311779189 doi "https://doi.org/10.1016/j.engappai.2022.105659" @default.
- W4311779189 hasPublicationYear "2023" @default.
- W4311779189 type Work @default.
- W4311779189 citedByCount "1" @default.
- W4311779189 countsByYear W43117791892023 @default.
- W4311779189 crossrefType "journal-article" @default.
- W4311779189 hasAuthorship W4311779189A5018878424 @default.
- W4311779189 hasAuthorship W4311779189A5020049907 @default.
- W4311779189 hasAuthorship W4311779189A5044495947 @default.
- W4311779189 hasAuthorship W4311779189A5059246379 @default.
- W4311779189 hasAuthorship W4311779189A5065302408 @default.
- W4311779189 hasAuthorship W4311779189A5076777912 @default.
- W4311779189 hasConcept C111012933 @default.
- W4311779189 hasConcept C111919701 @default.
- W4311779189 hasConcept C119857082 @default.
- W4311779189 hasConcept C124101348 @default.
- W4311779189 hasConcept C126255220 @default.
- W4311779189 hasConcept C150899416 @default.
- W4311779189 hasConcept C154945302 @default.
- W4311779189 hasConcept C177774035 @default.
- W4311779189 hasConcept C33252445 @default.
- W4311779189 hasConcept C33923547 @default.