Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311782877> ?p ?o ?g. }
- W4311782877 endingPage "e14566" @default.
- W4311782877 startingPage "e14566" @default.
- W4311782877 abstract "Some patients with lung cancer can benefit from immunotherapy, but the biomarkers that predict immunotherapy response were not well defined. Baseline characteristic of patients may be the most convenient and effective markers. Therefore, our study was designed to explore the association between baseline characteristics of patients with lung cancer and the efficacy of immunotherapy.A total of 216 lung cancer patients from Tianjin Medical University Cancer Institute & Hospital who received immunotherapy between 2017 and 2021 were included in the retrospective analysis. All baseline characteristic data were collected and then univariate log-rank analysis and multivariate COX regression analysis were performed. Kaplan-Meier analysis was used to evaluate patients' progression-free survival (PFS). A nomogram based on significant biomarkers was constructed to predict PFS rate of patients receiving immunotherapy. We evaluated the prediction accuracy of nomogram using C-indices and calibration curves.Univariate analysis of all collected baseline factors showed that age, clinical stage, white blood cell (WBC), lymphocyte (LYM), monocyte (MON), eosinophils (AEC), hemoglobin (HB), lactate dehydrogenase (LDH), albumin (ALB) and treatment line were significantly associated with PFS after immunotherapy. Then these 10 risk factors were included in a multivariate regression analysis, which indicated that age (HR: 1.95, 95% CI [1.01-3.78], P = 0.048), MON (HR: 1.74, 95% CI [1.07-2.81], P = 0.025), LDH (HR: 0.59, 95% CI [0.36-0.95], P = 0.030), and line (HR: 0.57, 95% CI [0.35-0.94], P = 0.026) were significantly associated with PFS in patients with lung cancer receiving immunotherapy. Patients with higher ALB showed a greater trend of benefit compared with patients with lower ALB (HR: 1.58, 95% CI [0.94-2.66], P = 0.084). Patients aged ≥51 years, with high ALB, low LDH, first-line immunotherapy, and high MON had better response rates and clinical benefits. The nomogram based on age, ALB, MON, LDH, line was established to predict the prognosis of patients treated with immune checkpoint inhibitor (ICI). The C-index of training cohort and validation cohort were close, 0.71 and 0.75, respectively. The fitting degree of calibration curve was high, which confirmed the high prediction value of our nomogram.Age, ALB, MON, LDH, line can be used as reliable predictive biomarkers for PFS, response rate and cancer control in patients with lung cancer receiving immunotherapy. The nomogram based on age, ALB, MON, LDH, line was of great significance for predicting 1-year-PFS, 2-year-PFS and 3-year-PFS in patients with advanced lung cancer treated with immunotherapy." @default.
- W4311782877 created "2022-12-28" @default.
- W4311782877 creator A5006688367 @default.
- W4311782877 creator A5055267211 @default.
- W4311782877 creator A5056496295 @default.
- W4311782877 creator A5061898071 @default.
- W4311782877 creator A5082350787 @default.
- W4311782877 creator A5090951233 @default.
- W4311782877 date "2022-12-15" @default.
- W4311782877 modified "2023-10-18" @default.
- W4311782877 title "Identification of prognostic factors and nomogram model for patients with advanced lung cancer receiving immune checkpoint inhibitors" @default.
- W4311782877 cites W1492893697 @default.
- W4311782877 cites W1809056726 @default.
- W4311782877 cites W1991424350 @default.
- W4311782877 cites W2014229457 @default.
- W4311782877 cites W2096756475 @default.
- W4311782877 cites W2100158834 @default.
- W4311782877 cites W2116554142 @default.
- W4311782877 cites W2118278569 @default.
- W4311782877 cites W2123105952 @default.
- W4311782877 cites W2127060036 @default.
- W4311782877 cites W2127737941 @default.
- W4311782877 cites W2156604663 @default.
- W4311782877 cites W2293531514 @default.
- W4311782877 cites W2396808887 @default.
- W4311782877 cites W2527905628 @default.
- W4311782877 cites W2560367415 @default.
- W4311782877 cites W2571423414 @default.
- W4311782877 cites W2575182211 @default.
- W4311782877 cites W2784283849 @default.
- W4311782877 cites W2793602429 @default.
- W4311782877 cites W2797675588 @default.
- W4311782877 cites W2803847828 @default.
- W4311782877 cites W2808441345 @default.
- W4311782877 cites W2883706035 @default.
- W4311782877 cites W2889026937 @default.
- W4311782877 cites W2892640821 @default.
- W4311782877 cites W2912736725 @default.
- W4311782877 cites W2913298787 @default.
- W4311782877 cites W2925446385 @default.
- W4311782877 cites W2976744492 @default.
- W4311782877 cites W2977843586 @default.
- W4311782877 cites W2981221722 @default.
- W4311782877 cites W2981790403 @default.
- W4311782877 cites W3013536594 @default.
- W4311782877 cites W3022919793 @default.
- W4311782877 cites W3023611224 @default.
- W4311782877 cites W3032432061 @default.
- W4311782877 cites W3041284694 @default.
- W4311782877 cites W3047718208 @default.
- W4311782877 cites W3080099616 @default.
- W4311782877 cites W3081088465 @default.
- W4311782877 cites W3081903722 @default.
- W4311782877 cites W3086245137 @default.
- W4311782877 cites W3091399767 @default.
- W4311782877 cites W3093036217 @default.
- W4311782877 cites W3095704564 @default.
- W4311782877 cites W3104254817 @default.
- W4311782877 cites W3106806530 @default.
- W4311782877 cites W3109327366 @default.
- W4311782877 cites W3112603365 @default.
- W4311782877 cites W3126212846 @default.
- W4311782877 cites W3127309795 @default.
- W4311782877 cites W3127371144 @default.
- W4311782877 cites W3135105663 @default.
- W4311782877 cites W3152729586 @default.
- W4311782877 cites W3159374722 @default.
- W4311782877 cites W3211995450 @default.
- W4311782877 cites W4206275807 @default.
- W4311782877 cites W4210744364 @default.
- W4311782877 cites W4221128551 @default.
- W4311782877 doi "https://doi.org/10.7717/peerj.14566" @default.
- W4311782877 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36540802" @default.
- W4311782877 hasPublicationYear "2022" @default.
- W4311782877 type Work @default.
- W4311782877 citedByCount "0" @default.
- W4311782877 crossrefType "journal-article" @default.
- W4311782877 hasAuthorship W4311782877A5006688367 @default.
- W4311782877 hasAuthorship W4311782877A5055267211 @default.
- W4311782877 hasAuthorship W4311782877A5056496295 @default.
- W4311782877 hasAuthorship W4311782877A5061898071 @default.
- W4311782877 hasAuthorship W4311782877A5082350787 @default.
- W4311782877 hasAuthorship W4311782877A5090951233 @default.
- W4311782877 hasBestOaLocation W43117828771 @default.
- W4311782877 hasConcept C121608353 @default.
- W4311782877 hasConcept C126322002 @default.
- W4311782877 hasConcept C143998085 @default.
- W4311782877 hasConcept C144301174 @default.
- W4311782877 hasConcept C2776256026 @default.
- W4311782877 hasConcept C2777701055 @default.
- W4311782877 hasConcept C34626388 @default.
- W4311782877 hasConcept C38180746 @default.
- W4311782877 hasConcept C50382708 @default.
- W4311782877 hasConcept C71924100 @default.
- W4311782877 hasConceptScore W4311782877C121608353 @default.
- W4311782877 hasConceptScore W4311782877C126322002 @default.
- W4311782877 hasConceptScore W4311782877C143998085 @default.
- W4311782877 hasConceptScore W4311782877C144301174 @default.