Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311790957> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4311790957 endingPage "9859" @default.
- W4311790957 startingPage "9859" @default.
- W4311790957 abstract "State-of-the-art healthcare technologies are incorporating advanced Artificial Intelligence (AI) models, allowing for rapid and easy disease diagnosis. However, most AI models are considered black boxes, because there is no explanation for the decisions made by these models. Users may find it challenging to comprehend and interpret the results. Explainable AI (XAI) can explain the machine learning (ML) outputs and contribution of features in disease prediction models. Electroencephalography (EEG) is a potential predictive tool for understanding cortical impairment caused by an ischemic stroke and can be utilized for acute stroke prediction, neurologic prognosis, and post-stroke treatment. This study aims to utilize ML models to classify the ischemic stroke group and the healthy control group for acute stroke prediction in active states. Moreover, XAI tools (Eli5 and LIME) were utilized to explain the behavior of the model and determine the significant features that contribute to stroke prediction models. In this work, we studied 48 patients admitted to a hospital with acute ischemic stroke and 75 healthy adults who had no history of identified other neurological illnesses. EEG was obtained within three months following the onset of ischemic stroke symptoms using frontal, central, temporal, and occipital cortical electrodes (Fz, C1, T7, Oz). EEG data were collected in an active state (walking, working, and reading tasks). In the results of the ML approach, the Adaptive Gradient Boosting models showed around 80% accuracy for the classification of the control group and the stroke group. Eli5 and LIME were utilized to explain the behavior of the stroke prediction model and interpret the model locally around the prediction. The Eli5 and LIME interpretable models emphasized the spectral delta and theta features as local contributors to stroke prediction. From the findings of this explainable AI research, it is expected that the stroke-prediction XAI model will help with post-stroke treatment and recovery, as well as help healthcare professionals, make their diagnostic decisions more explainable." @default.
- W4311790957 created "2022-12-28" @default.
- W4311790957 creator A5000791338 @default.
- W4311790957 creator A5015060302 @default.
- W4311790957 creator A5036223616 @default.
- W4311790957 creator A5061804141 @default.
- W4311790957 creator A5088296414 @default.
- W4311790957 date "2022-12-15" @default.
- W4311790957 modified "2023-10-04" @default.
- W4311790957 title "Explainable Artificial Intelligence Model for Stroke Prediction Using EEG Signal" @default.
- W4311790957 cites W2010674238 @default.
- W4311790957 cites W2043305968 @default.
- W4311790957 cites W2048373484 @default.
- W4311790957 cites W2098477576 @default.
- W4311790957 cites W2104289557 @default.
- W4311790957 cites W2106822551 @default.
- W4311790957 cites W2126521277 @default.
- W4311790957 cites W2141224535 @default.
- W4311790957 cites W2151789124 @default.
- W4311790957 cites W2282821441 @default.
- W4311790957 cites W2509460906 @default.
- W4311790957 cites W2741093459 @default.
- W4311790957 cites W2762292687 @default.
- W4311790957 cites W2796318158 @default.
- W4311790957 cites W2806980362 @default.
- W4311790957 cites W2885927628 @default.
- W4311790957 cites W2953537379 @default.
- W4311790957 cites W2990355251 @default.
- W4311790957 cites W3013354695 @default.
- W4311790957 cites W3102476541 @default.
- W4311790957 cites W3109724004 @default.
- W4311790957 cites W3135582951 @default.
- W4311790957 cites W3178835531 @default.
- W4311790957 cites W3189936134 @default.
- W4311790957 cites W3197552172 @default.
- W4311790957 cites W4211070880 @default.
- W4311790957 cites W4220842428 @default.
- W4311790957 cites W4223919817 @default.
- W4311790957 cites W4256256075 @default.
- W4311790957 cites W4296337675 @default.
- W4311790957 cites W793601414 @default.
- W4311790957 cites W968071110 @default.
- W4311790957 cites W2885874908 @default.
- W4311790957 doi "https://doi.org/10.3390/s22249859" @default.
- W4311790957 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36560227" @default.
- W4311790957 hasPublicationYear "2022" @default.
- W4311790957 type Work @default.
- W4311790957 citedByCount "27" @default.
- W4311790957 countsByYear W43117909572023 @default.
- W4311790957 crossrefType "journal-article" @default.
- W4311790957 hasAuthorship W4311790957A5000791338 @default.
- W4311790957 hasAuthorship W4311790957A5015060302 @default.
- W4311790957 hasAuthorship W4311790957A5036223616 @default.
- W4311790957 hasAuthorship W4311790957A5061804141 @default.
- W4311790957 hasAuthorship W4311790957A5088296414 @default.
- W4311790957 hasBestOaLocation W43117909571 @default.
- W4311790957 hasConcept C118552586 @default.
- W4311790957 hasConcept C119857082 @default.
- W4311790957 hasConcept C127413603 @default.
- W4311790957 hasConcept C154945302 @default.
- W4311790957 hasConcept C2780645631 @default.
- W4311790957 hasConcept C41008148 @default.
- W4311790957 hasConcept C46686674 @default.
- W4311790957 hasConcept C522805319 @default.
- W4311790957 hasConcept C71924100 @default.
- W4311790957 hasConcept C78519656 @default.
- W4311790957 hasConceptScore W4311790957C118552586 @default.
- W4311790957 hasConceptScore W4311790957C119857082 @default.
- W4311790957 hasConceptScore W4311790957C127413603 @default.
- W4311790957 hasConceptScore W4311790957C154945302 @default.
- W4311790957 hasConceptScore W4311790957C2780645631 @default.
- W4311790957 hasConceptScore W4311790957C41008148 @default.
- W4311790957 hasConceptScore W4311790957C46686674 @default.
- W4311790957 hasConceptScore W4311790957C522805319 @default.
- W4311790957 hasConceptScore W4311790957C71924100 @default.
- W4311790957 hasConceptScore W4311790957C78519656 @default.
- W4311790957 hasIssue "24" @default.
- W4311790957 hasLocation W43117909571 @default.
- W4311790957 hasLocation W43117909572 @default.
- W4311790957 hasLocation W43117909573 @default.
- W4311790957 hasLocation W43117909574 @default.
- W4311790957 hasOpenAccess W4311790957 @default.
- W4311790957 hasPrimaryLocation W43117909571 @default.
- W4311790957 hasRelatedWork W1987859285 @default.
- W4311790957 hasRelatedWork W1996541855 @default.
- W4311790957 hasRelatedWork W2748952813 @default.
- W4311790957 hasRelatedWork W2899084033 @default.
- W4311790957 hasRelatedWork W2961085424 @default.
- W4311790957 hasRelatedWork W3082059448 @default.
- W4311790957 hasRelatedWork W3195168932 @default.
- W4311790957 hasRelatedWork W4306674287 @default.
- W4311790957 hasRelatedWork W4313488044 @default.
- W4311790957 hasRelatedWork W4224009465 @default.
- W4311790957 hasVolume "22" @default.
- W4311790957 isParatext "false" @default.
- W4311790957 isRetracted "false" @default.
- W4311790957 workType "article" @default.