Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311791367> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4311791367 endingPage "2654" @default.
- W4311791367 startingPage "2654" @default.
- W4311791367 abstract "The transfer learning method, based on unsupervised domain adaptation (UDA), has been broadly utilized in research on fault diagnosis under variable working conditions with certain results. However, traditional UDA methods pay more attention to extracting information for the class labels and domain labels of data, ignoring the influence of data structure information on the extracted features. Therefore, we propose a domain-adversarial multi-graph convolutional network (DAMGCN) for UDA. A multi-graph convolutional network (MGCN), integrating three graph convolutional layers (multi-receptive field graph convolutional (MRFConv) layer, local extreme value convolutional (LEConv) layer, and graph attention convolutional (GATConv) layer) was used to mine data structure information. The domain discriminators and classifiers were utilized to model domain labels and class labels, respectively, and align the data structure differences through the correlation alignment (CORAL) index. The classification and feature extraction ability of the DAMGCN was significantly enhanced compared with other UDA algorithms by two example validation results, which can effectively achieve rolling bearing cross-domain fault diagnosis." @default.
- W4311791367 created "2022-12-28" @default.
- W4311791367 creator A5010888641 @default.
- W4311791367 creator A5034115721 @default.
- W4311791367 creator A5039266973 @default.
- W4311791367 creator A5081241410 @default.
- W4311791367 date "2022-12-15" @default.
- W4311791367 modified "2023-09-25" @default.
- W4311791367 title "A Domain-Adversarial Multi-Graph Convolutional Network for Unsupervised Domain Adaptation Rolling Bearing Fault Diagnosis" @default.
- W4311791367 cites W1779010541 @default.
- W4311791367 cites W2010619950 @default.
- W4311791367 cites W2019505419 @default.
- W4311791367 cites W2085269372 @default.
- W4311791367 cites W2158787690 @default.
- W4311791367 cites W2317595875 @default.
- W4311791367 cites W2793062918 @default.
- W4311791367 cites W2805662770 @default.
- W4311791367 cites W2889945482 @default.
- W4311791367 cites W2919115771 @default.
- W4311791367 cites W2960996736 @default.
- W4311791367 cites W2964288524 @default.
- W4311791367 cites W2965341826 @default.
- W4311791367 cites W2966813263 @default.
- W4311791367 cites W2969736276 @default.
- W4311791367 cites W2990403609 @default.
- W4311791367 cites W2994835796 @default.
- W4311791367 cites W2997997679 @default.
- W4311791367 cites W2998830408 @default.
- W4311791367 cites W3012040475 @default.
- W4311791367 cites W3092764589 @default.
- W4311791367 cites W3096237054 @default.
- W4311791367 cites W3110510730 @default.
- W4311791367 cites W3112611640 @default.
- W4311791367 cites W3122126208 @default.
- W4311791367 cites W3157039246 @default.
- W4311791367 cites W3201753566 @default.
- W4311791367 cites W3213841105 @default.
- W4311791367 cites W4210257598 @default.
- W4311791367 cites W4211058054 @default.
- W4311791367 cites W4280549546 @default.
- W4311791367 doi "https://doi.org/10.3390/sym14122654" @default.
- W4311791367 hasPublicationYear "2022" @default.
- W4311791367 type Work @default.
- W4311791367 citedByCount "1" @default.
- W4311791367 countsByYear W43117913672023 @default.
- W4311791367 crossrefType "journal-article" @default.
- W4311791367 hasAuthorship W4311791367A5010888641 @default.
- W4311791367 hasAuthorship W4311791367A5034115721 @default.
- W4311791367 hasAuthorship W4311791367A5039266973 @default.
- W4311791367 hasAuthorship W4311791367A5081241410 @default.
- W4311791367 hasBestOaLocation W43117913671 @default.
- W4311791367 hasConcept C124101348 @default.
- W4311791367 hasConcept C132525143 @default.
- W4311791367 hasConcept C153180895 @default.
- W4311791367 hasConcept C154945302 @default.
- W4311791367 hasConcept C2776434776 @default.
- W4311791367 hasConcept C41008148 @default.
- W4311791367 hasConcept C52622490 @default.
- W4311791367 hasConcept C80444323 @default.
- W4311791367 hasConcept C81363708 @default.
- W4311791367 hasConcept C95623464 @default.
- W4311791367 hasConceptScore W4311791367C124101348 @default.
- W4311791367 hasConceptScore W4311791367C132525143 @default.
- W4311791367 hasConceptScore W4311791367C153180895 @default.
- W4311791367 hasConceptScore W4311791367C154945302 @default.
- W4311791367 hasConceptScore W4311791367C2776434776 @default.
- W4311791367 hasConceptScore W4311791367C41008148 @default.
- W4311791367 hasConceptScore W4311791367C52622490 @default.
- W4311791367 hasConceptScore W4311791367C80444323 @default.
- W4311791367 hasConceptScore W4311791367C81363708 @default.
- W4311791367 hasConceptScore W4311791367C95623464 @default.
- W4311791367 hasIssue "12" @default.
- W4311791367 hasLocation W43117913671 @default.
- W4311791367 hasOpenAccess W4311791367 @default.
- W4311791367 hasPrimaryLocation W43117913671 @default.
- W4311791367 hasRelatedWork W1964120219 @default.
- W4311791367 hasRelatedWork W2144059113 @default.
- W4311791367 hasRelatedWork W2146076056 @default.
- W4311791367 hasRelatedWork W2406522397 @default.
- W4311791367 hasRelatedWork W2767651786 @default.
- W4311791367 hasRelatedWork W2811390910 @default.
- W4311791367 hasRelatedWork W2912288872 @default.
- W4311791367 hasRelatedWork W2913302899 @default.
- W4311791367 hasRelatedWork W3003836766 @default.
- W4311791367 hasRelatedWork W4312376745 @default.
- W4311791367 hasVolume "14" @default.
- W4311791367 isParatext "false" @default.
- W4311791367 isRetracted "false" @default.
- W4311791367 workType "article" @default.