Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311794019> ?p ?o ?g. }
- W4311794019 endingPage "804" @default.
- W4311794019 startingPage "804" @default.
- W4311794019 abstract "Automatic pain estimation plays an important role in the field of medicine and health. In the previous studies, most of the entire image frame was directly imported into the model. This operation can allow background differences to negatively affect the experimental results. To tackle this issue, we propose the parallel CNNs framework with regional attention for automatic pain intensity estimation at the frame level. This modified convolution neural network structure combines BlurPool methods to enhance translation invariance in network learning. The improved networks can focus on learning core regions while supplementing global information, thereby obtaining parallel feature information. The core regions are mainly based on the tradeoff between the weights of the channel attention modules and the spatial attention modules. Meanwhile, the background information of the non-core regions is shielded by the DropBlock algorithm. These steps enable the model to learn facial pain features adaptively, not limited to a single image pattern. The experimental result of our proposed model outperforms many state-of-the-art methods on the RMSE and PCC metrics when evaluated on the diverse pain levels of over 12,000 images provided by the publicly available UNBC dataset. The model accuracy rate has reached 95.11%. The experimental results show that the proposed method is highly efficient at extracting the facial features of pain and predicts pain levels with high accuracy." @default.
- W4311794019 created "2022-12-28" @default.
- W4311794019 creator A5014103796 @default.
- W4311794019 creator A5056242195 @default.
- W4311794019 creator A5063224243 @default.
- W4311794019 creator A5086187557 @default.
- W4311794019 date "2022-12-14" @default.
- W4311794019 modified "2023-09-25" @default.
- W4311794019 title "Image-Based Pain Intensity Estimation Using Parallel CNNs with Regional Attention" @default.
- W4311794019 cites W1588539311 @default.
- W4311794019 cites W1980617087 @default.
- W4311794019 cites W2013068849 @default.
- W4311794019 cites W2063363846 @default.
- W4311794019 cites W2077847255 @default.
- W4311794019 cites W2090495691 @default.
- W4311794019 cites W2097117768 @default.
- W4311794019 cites W2101545465 @default.
- W4311794019 cites W2104067190 @default.
- W4311794019 cites W2105786999 @default.
- W4311794019 cites W2106043670 @default.
- W4311794019 cites W2149245914 @default.
- W4311794019 cites W2194775991 @default.
- W4311794019 cites W2325939864 @default.
- W4311794019 cites W2335787378 @default.
- W4311794019 cites W2338414754 @default.
- W4311794019 cites W2469434562 @default.
- W4311794019 cites W2587128043 @default.
- W4311794019 cites W2618530766 @default.
- W4311794019 cites W2731821979 @default.
- W4311794019 cites W2756270667 @default.
- W4311794019 cites W2765268259 @default.
- W4311794019 cites W2765663338 @default.
- W4311794019 cites W2798764454 @default.
- W4311794019 cites W2805382513 @default.
- W4311794019 cites W2883084184 @default.
- W4311794019 cites W2954739124 @default.
- W4311794019 cites W2955058313 @default.
- W4311794019 cites W2962858109 @default.
- W4311794019 cites W2963236152 @default.
- W4311794019 cites W2963466847 @default.
- W4311794019 cites W2963606198 @default.
- W4311794019 cites W3043476716 @default.
- W4311794019 cites W3043547428 @default.
- W4311794019 cites W3046257495 @default.
- W4311794019 cites W3081107298 @default.
- W4311794019 cites W3087023375 @default.
- W4311794019 cites W3093534379 @default.
- W4311794019 cites W3109516005 @default.
- W4311794019 cites W3127057006 @default.
- W4311794019 cites W3138065741 @default.
- W4311794019 cites W3209658314 @default.
- W4311794019 cites W4220930759 @default.
- W4311794019 cites W4237415212 @default.
- W4311794019 cites W4280575064 @default.
- W4311794019 cites W4287379322 @default.
- W4311794019 doi "https://doi.org/10.3390/bioengineering9120804" @default.
- W4311794019 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36551010" @default.
- W4311794019 hasPublicationYear "2022" @default.
- W4311794019 type Work @default.
- W4311794019 citedByCount "0" @default.
- W4311794019 crossrefType "journal-article" @default.
- W4311794019 hasAuthorship W4311794019A5014103796 @default.
- W4311794019 hasAuthorship W4311794019A5056242195 @default.
- W4311794019 hasAuthorship W4311794019A5063224243 @default.
- W4311794019 hasAuthorship W4311794019A5086187557 @default.
- W4311794019 hasBestOaLocation W43117940191 @default.
- W4311794019 hasConcept C104317684 @default.
- W4311794019 hasConcept C105580179 @default.
- W4311794019 hasConcept C105795698 @default.
- W4311794019 hasConcept C108583219 @default.
- W4311794019 hasConcept C119857082 @default.
- W4311794019 hasConcept C120665830 @default.
- W4311794019 hasConcept C121332964 @default.
- W4311794019 hasConcept C126042441 @default.
- W4311794019 hasConcept C138885662 @default.
- W4311794019 hasConcept C139945424 @default.
- W4311794019 hasConcept C149364088 @default.
- W4311794019 hasConcept C153180895 @default.
- W4311794019 hasConcept C154945302 @default.
- W4311794019 hasConcept C185592680 @default.
- W4311794019 hasConcept C192209626 @default.
- W4311794019 hasConcept C202444582 @default.
- W4311794019 hasConcept C2776401178 @default.
- W4311794019 hasConcept C33923547 @default.
- W4311794019 hasConcept C41008148 @default.
- W4311794019 hasConcept C41895202 @default.
- W4311794019 hasConcept C50644808 @default.
- W4311794019 hasConcept C55493867 @default.
- W4311794019 hasConcept C66746571 @default.
- W4311794019 hasConcept C76155785 @default.
- W4311794019 hasConcept C81363708 @default.
- W4311794019 hasConcept C9652623 @default.
- W4311794019 hasConceptScore W4311794019C104317684 @default.
- W4311794019 hasConceptScore W4311794019C105580179 @default.
- W4311794019 hasConceptScore W4311794019C105795698 @default.
- W4311794019 hasConceptScore W4311794019C108583219 @default.
- W4311794019 hasConceptScore W4311794019C119857082 @default.
- W4311794019 hasConceptScore W4311794019C120665830 @default.