Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311794022> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4311794022 endingPage "12861" @default.
- W4311794022 startingPage "12861" @default.
- W4311794022 abstract "This paper presents an autonomous grasping approach for complex-shaped objects using an anthropomorphic robotic hand. Although human-like robotic hands have a number of distinctive advantages, most of the current autonomous robotic pickup systems still use relatively simple gripper setups such as a two-finger gripper or even a suction gripper. The main difficulty of utilizing human-like robotic hands lies in the sheer complexity of the system; it is inherently tough to plan and control the motions of the high degree of freedom (DOF) system. Although data-driven approaches have been successfully used for motion planning of various robotic systems recently, it is hard to directly apply them to high-DOF systems due to the difficulty of acquiring training data. In this paper, we propose a novel approach for grasping complex-shaped objects using a high-DOF robotic manipulation system consisting of a seven-DOF manipulator and a four-fingered robotic hand with 16 DOFs. Human demonstration data are first acquired using a virtual reality controller with 6D pose tracking and individual capacitive finger sensors. Then, the 3D shape of the manipulation target object is reconstructed from multiple depth images recorded using the wrist-mounted RGBD camera. The grasping pose for the object is estimated using a residual neural network (ResNet), K-means clustering (KNN), and a point-set registration algorithm. Then, the manipulator moves to the grasping pose following the trajectory created by dynamic movement primitives (DMPs). Finally, the robot performs one of the object-specific grasping motions learned from human demonstration. The suggested system is evaluated by an official tester using five objects with promising results." @default.
- W4311794022 created "2022-12-28" @default.
- W4311794022 creator A5005116895 @default.
- W4311794022 creator A5008183759 @default.
- W4311794022 creator A5029538412 @default.
- W4311794022 creator A5059853141 @default.
- W4311794022 creator A5068793026 @default.
- W4311794022 creator A5071076615 @default.
- W4311794022 date "2022-12-14" @default.
- W4311794022 modified "2023-10-09" @default.
- W4311794022 title "Anthropomorphic Grasping of Complex-Shaped Objects Using Imitation Learning" @default.
- W4311794022 cites W1539716820 @default.
- W4311794022 cites W2012204020 @default.
- W4311794022 cites W2018020788 @default.
- W4311794022 cites W2057134775 @default.
- W4311794022 cites W2062525454 @default.
- W4311794022 cites W2124394479 @default.
- W4311794022 cites W2126909264 @default.
- W4311794022 cites W2136023023 @default.
- W4311794022 cites W2136719407 @default.
- W4311794022 cites W2154543878 @default.
- W4311794022 cites W2194775991 @default.
- W4311794022 cites W2282481780 @default.
- W4311794022 cites W2434029932 @default.
- W4311794022 cites W2774042362 @default.
- W4311794022 cites W2789805345 @default.
- W4311794022 cites W2910788814 @default.
- W4311794022 cites W2921073965 @default.
- W4311794022 cites W2963669336 @default.
- W4311794022 cites W2968340082 @default.
- W4311794022 cites W2990747716 @default.
- W4311794022 cites W3034540853 @default.
- W4311794022 cites W3080908627 @default.
- W4311794022 cites W3085779746 @default.
- W4311794022 cites W3101780148 @default.
- W4311794022 cites W3106846594 @default.
- W4311794022 cites W3116391487 @default.
- W4311794022 cites W3117514665 @default.
- W4311794022 cites W3130047870 @default.
- W4311794022 cites W3131625553 @default.
- W4311794022 cites W3138330110 @default.
- W4311794022 cites W3169264697 @default.
- W4311794022 cites W3174286486 @default.
- W4311794022 cites W3201823266 @default.
- W4311794022 cites W3203740651 @default.
- W4311794022 cites W4210641737 @default.
- W4311794022 cites W4213113494 @default.
- W4311794022 cites W3173335889 @default.
- W4311794022 doi "https://doi.org/10.3390/app122412861" @default.
- W4311794022 hasPublicationYear "2022" @default.
- W4311794022 type Work @default.
- W4311794022 citedByCount "2" @default.
- W4311794022 countsByYear W43117940222023 @default.
- W4311794022 crossrefType "journal-article" @default.
- W4311794022 hasAuthorship W4311794022A5005116895 @default.
- W4311794022 hasAuthorship W4311794022A5008183759 @default.
- W4311794022 hasAuthorship W4311794022A5029538412 @default.
- W4311794022 hasAuthorship W4311794022A5059853141 @default.
- W4311794022 hasAuthorship W4311794022A5068793026 @default.
- W4311794022 hasAuthorship W4311794022A5071076615 @default.
- W4311794022 hasBestOaLocation W43117940221 @default.
- W4311794022 hasConcept C121332964 @default.
- W4311794022 hasConcept C1276947 @default.
- W4311794022 hasConcept C13662910 @default.
- W4311794022 hasConcept C154945302 @default.
- W4311794022 hasConcept C171268870 @default.
- W4311794022 hasConcept C199360897 @default.
- W4311794022 hasConcept C2781238097 @default.
- W4311794022 hasConcept C31972630 @default.
- W4311794022 hasConcept C41008148 @default.
- W4311794022 hasConceptScore W4311794022C121332964 @default.
- W4311794022 hasConceptScore W4311794022C1276947 @default.
- W4311794022 hasConceptScore W4311794022C13662910 @default.
- W4311794022 hasConceptScore W4311794022C154945302 @default.
- W4311794022 hasConceptScore W4311794022C171268870 @default.
- W4311794022 hasConceptScore W4311794022C199360897 @default.
- W4311794022 hasConceptScore W4311794022C2781238097 @default.
- W4311794022 hasConceptScore W4311794022C31972630 @default.
- W4311794022 hasConceptScore W4311794022C41008148 @default.
- W4311794022 hasIssue "24" @default.
- W4311794022 hasLocation W43117940221 @default.
- W4311794022 hasOpenAccess W4311794022 @default.
- W4311794022 hasPrimaryLocation W43117940221 @default.
- W4311794022 hasRelatedWork W1563441844 @default.
- W4311794022 hasRelatedWork W2007544051 @default.
- W4311794022 hasRelatedWork W2124664807 @default.
- W4311794022 hasRelatedWork W2389377526 @default.
- W4311794022 hasRelatedWork W2676254747 @default.
- W4311794022 hasRelatedWork W2975200075 @default.
- W4311794022 hasRelatedWork W3185561939 @default.
- W4311794022 hasRelatedWork W4249963983 @default.
- W4311794022 hasRelatedWork W4321376912 @default.
- W4311794022 hasRelatedWork W4386794497 @default.
- W4311794022 hasVolume "12" @default.
- W4311794022 isParatext "false" @default.
- W4311794022 isRetracted "false" @default.
- W4311794022 workType "article" @default.