Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311794024> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4311794024 endingPage "1211" @default.
- W4311794024 startingPage "1200" @default.
- W4311794024 abstract "This paper addresses the problem of adapting a control system to unseen conditions, specifically to the problem of trajectory tracking in off-road conditions. Three different approaches are considered and compared for this comparative study: The first approach is a classical reinforcement learning method to define the steering control of the system. The second strategy uses an end-to-end reinforcement learning method, allowing for the training of a policy for the steering of the robot. The third strategy uses a hybrid gain tuning method, allowing for the adaptation of the settling distance with respect to the robot’s capabilities according to the perception, in order to optimize the robot’s behavior with respect to an objective function. The three methods are described and compared to the results obtained using constant parameters in order to identify their respective strengths and weaknesses. They have been implemented and tested in real conditions on an off-road mobile robot with variable terrain and trajectories. The hybrid method allowing for an overall reduction of 53.2% when compared with a predictive control law. A thorough analysis of the methods are then performed, and further insights are obtained in the context of gain tuning for steering controllers in dynamic environments. The performance and transferability of these methods are demonstrated, as well as their robustness to changes in the terrain properties. As a result, tracking errors are reduced while preserving the stability and the explainability of the control architecture." @default.
- W4311794024 created "2022-12-28" @default.
- W4311794024 creator A5039125592 @default.
- W4311794024 creator A5048357111 @default.
- W4311794024 creator A5059748678 @default.
- W4311794024 creator A5076521836 @default.
- W4311794024 date "2022-12-14" @default.
- W4311794024 modified "2023-10-14" @default.
- W4311794024 title "Online Gain Tuning Using Neural Networks: A Comparative Study" @default.
- W4311794024 cites W1996849432 @default.
- W4311794024 cites W2027197837 @default.
- W4311794024 cites W2114328001 @default.
- W4311794024 cites W2238589392 @default.
- W4311794024 cites W2257979135 @default.
- W4311794024 cites W2583403049 @default.
- W4311794024 cites W2591319626 @default.
- W4311794024 cites W2616635592 @default.
- W4311794024 cites W2738836383 @default.
- W4311794024 cites W2910230606 @default.
- W4311794024 cites W2919115771 @default.
- W4311794024 cites W2962977206 @default.
- W4311794024 cites W3043448064 @default.
- W4311794024 cites W3133054887 @default.
- W4311794024 cites W3199444512 @default.
- W4311794024 cites W3206763967 @default.
- W4311794024 cites W4210480843 @default.
- W4311794024 cites W4210901993 @default.
- W4311794024 cites W4283517542 @default.
- W4311794024 cites W4285262045 @default.
- W4311794024 doi "https://doi.org/10.3390/agriengineering4040075" @default.
- W4311794024 hasPublicationYear "2022" @default.
- W4311794024 type Work @default.
- W4311794024 citedByCount "0" @default.
- W4311794024 crossrefType "journal-article" @default.
- W4311794024 hasAuthorship W4311794024A5039125592 @default.
- W4311794024 hasAuthorship W4311794024A5048357111 @default.
- W4311794024 hasAuthorship W4311794024A5059748678 @default.
- W4311794024 hasAuthorship W4311794024A5076521836 @default.
- W4311794024 hasBestOaLocation W43117940241 @default.
- W4311794024 hasConcept C104317684 @default.
- W4311794024 hasConcept C121332964 @default.
- W4311794024 hasConcept C1276947 @default.
- W4311794024 hasConcept C13662910 @default.
- W4311794024 hasConcept C151730666 @default.
- W4311794024 hasConcept C154945302 @default.
- W4311794024 hasConcept C161840515 @default.
- W4311794024 hasConcept C185592680 @default.
- W4311794024 hasConcept C18903297 @default.
- W4311794024 hasConcept C19966478 @default.
- W4311794024 hasConcept C2775924081 @default.
- W4311794024 hasConcept C2779343474 @default.
- W4311794024 hasConcept C41008148 @default.
- W4311794024 hasConcept C47446073 @default.
- W4311794024 hasConcept C55493867 @default.
- W4311794024 hasConcept C63479239 @default.
- W4311794024 hasConcept C86803240 @default.
- W4311794024 hasConcept C90509273 @default.
- W4311794024 hasConcept C97541855 @default.
- W4311794024 hasConceptScore W4311794024C104317684 @default.
- W4311794024 hasConceptScore W4311794024C121332964 @default.
- W4311794024 hasConceptScore W4311794024C1276947 @default.
- W4311794024 hasConceptScore W4311794024C13662910 @default.
- W4311794024 hasConceptScore W4311794024C151730666 @default.
- W4311794024 hasConceptScore W4311794024C154945302 @default.
- W4311794024 hasConceptScore W4311794024C161840515 @default.
- W4311794024 hasConceptScore W4311794024C185592680 @default.
- W4311794024 hasConceptScore W4311794024C18903297 @default.
- W4311794024 hasConceptScore W4311794024C19966478 @default.
- W4311794024 hasConceptScore W4311794024C2775924081 @default.
- W4311794024 hasConceptScore W4311794024C2779343474 @default.
- W4311794024 hasConceptScore W4311794024C41008148 @default.
- W4311794024 hasConceptScore W4311794024C47446073 @default.
- W4311794024 hasConceptScore W4311794024C55493867 @default.
- W4311794024 hasConceptScore W4311794024C63479239 @default.
- W4311794024 hasConceptScore W4311794024C86803240 @default.
- W4311794024 hasConceptScore W4311794024C90509273 @default.
- W4311794024 hasConceptScore W4311794024C97541855 @default.
- W4311794024 hasIssue "4" @default.
- W4311794024 hasLocation W43117940241 @default.
- W4311794024 hasLocation W43117940242 @default.
- W4311794024 hasLocation W43117940243 @default.
- W4311794024 hasOpenAccess W4311794024 @default.
- W4311794024 hasPrimaryLocation W43117940241 @default.
- W4311794024 hasRelatedWork W1514516386 @default.
- W4311794024 hasRelatedWork W1968704373 @default.
- W4311794024 hasRelatedWork W2085578998 @default.
- W4311794024 hasRelatedWork W2131012217 @default.
- W4311794024 hasRelatedWork W2131357063 @default.
- W4311794024 hasRelatedWork W2139992381 @default.
- W4311794024 hasRelatedWork W2786412097 @default.
- W4311794024 hasRelatedWork W2984863875 @default.
- W4311794024 hasRelatedWork W4206589974 @default.
- W4311794024 hasRelatedWork W4386721837 @default.
- W4311794024 hasVolume "4" @default.
- W4311794024 isParatext "false" @default.
- W4311794024 isRetracted "false" @default.
- W4311794024 workType "article" @default.