Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311796592> ?p ?o ?g. }
- W4311796592 endingPage "115831" @default.
- W4311796592 startingPage "115831" @default.
- W4311796592 abstract "Numerical simulations for spatiotemporal processes involving material, geometrical and contact nonlinearities might be computationally prohibitive for many-evaluation applications. Considering the strong nonlinearity of dynamic processes, the prediction of high-dimensional spatiotemporal responses remains challenging for most surrogate-based models. To address such issues, a Stochastic Dependency Neural Estimator (SDNE) is proposed to construct the mapping from the input parameter domain to the high-dimensional spatiotemporal response domain, revealing the underlying relationship between the high-dimensional regression estimation and manifold distribution hypothesis. Moreover, Graph Neural Networks (GNN) and Temporal Convolutional Neural Networks (TCN) are integrated to capture nonlinear features from irregular geometries and time series simultaneously. Two high-speed impact cases involving large deformation and highly nonlinear transients are investigated to validate the proposed method. The proposed SDNE achieves highly accurate prediction compared with Finite Element (FE) evaluations. To further validate the practical application of the proposed method, multi-objective crashworthiness optimizations are performed with the proposed SDNE. The results show that the proposed SDNE provides reliable predictions for spatiotemporal dynamics" @default.
- W4311796592 created "2022-12-28" @default.
- W4311796592 creator A5011323756 @default.
- W4311796592 creator A5015400278 @default.
- W4311796592 creator A5018073672 @default.
- W4311796592 creator A5052220949 @default.
- W4311796592 date "2023-02-01" @default.
- W4311796592 modified "2023-09-25" @default.
- W4311796592 title "Data-driven spatiotemporal modeling for structural dynamics on irregular domains by stochastic dependency neural estimation" @default.
- W4311796592 cites W1498436455 @default.
- W4311796592 cites W1988945200 @default.
- W4311796592 cites W2001141328 @default.
- W4311796592 cites W2001309901 @default.
- W4311796592 cites W2017999133 @default.
- W4311796592 cites W2024319908 @default.
- W4311796592 cites W2044623710 @default.
- W4311796592 cites W2054537998 @default.
- W4311796592 cites W2064675550 @default.
- W4311796592 cites W2081055856 @default.
- W4311796592 cites W2091230023 @default.
- W4311796592 cites W2094142463 @default.
- W4311796592 cites W2100495367 @default.
- W4311796592 cites W2101467366 @default.
- W4311796592 cites W2110485445 @default.
- W4311796592 cites W2126105956 @default.
- W4311796592 cites W2152896489 @default.
- W4311796592 cites W2166681504 @default.
- W4311796592 cites W2166944917 @default.
- W4311796592 cites W2415669995 @default.
- W4311796592 cites W2518825602 @default.
- W4311796592 cites W2527771322 @default.
- W4311796592 cites W2604390261 @default.
- W4311796592 cites W2605417418 @default.
- W4311796592 cites W2614390519 @default.
- W4311796592 cites W2625186681 @default.
- W4311796592 cites W2838828138 @default.
- W4311796592 cites W2886632495 @default.
- W4311796592 cites W2902865620 @default.
- W4311796592 cites W2904647428 @default.
- W4311796592 cites W2919115771 @default.
- W4311796592 cites W2948230027 @default.
- W4311796592 cites W2963693826 @default.
- W4311796592 cites W2972573265 @default.
- W4311796592 cites W2998104826 @default.
- W4311796592 cites W3000384001 @default.
- W4311796592 cites W3005256135 @default.
- W4311796592 cites W3011163836 @default.
- W4311796592 cites W3013552633 @default.
- W4311796592 cites W3014753739 @default.
- W4311796592 cites W3015947126 @default.
- W4311796592 cites W3034987805 @default.
- W4311796592 cites W3080517163 @default.
- W4311796592 cites W3102100346 @default.
- W4311796592 cites W3104534181 @default.
- W4311796592 cites W3110828371 @default.
- W4311796592 cites W3128853708 @default.
- W4311796592 cites W3147262955 @default.
- W4311796592 cites W3173686483 @default.
- W4311796592 cites W3174121031 @default.
- W4311796592 cites W3204748763 @default.
- W4311796592 cites W4206265152 @default.
- W4311796592 cites W4224992193 @default.
- W4311796592 cites W4247680473 @default.
- W4311796592 cites W4249517230 @default.
- W4311796592 cites W4280552439 @default.
- W4311796592 cites W4280575520 @default.
- W4311796592 cites W4280598592 @default.
- W4311796592 cites W4282914543 @default.
- W4311796592 cites W4282981439 @default.
- W4311796592 cites W4304185466 @default.
- W4311796592 doi "https://doi.org/10.1016/j.cma.2022.115831" @default.
- W4311796592 hasPublicationYear "2023" @default.
- W4311796592 type Work @default.
- W4311796592 citedByCount "1" @default.
- W4311796592 countsByYear W43117965922023 @default.
- W4311796592 crossrefType "journal-article" @default.
- W4311796592 hasAuthorship W4311796592A5011323756 @default.
- W4311796592 hasAuthorship W4311796592A5015400278 @default.
- W4311796592 hasAuthorship W4311796592A5018073672 @default.
- W4311796592 hasAuthorship W4311796592A5052220949 @default.
- W4311796592 hasConcept C105795698 @default.
- W4311796592 hasConcept C11413529 @default.
- W4311796592 hasConcept C121332964 @default.
- W4311796592 hasConcept C143724316 @default.
- W4311796592 hasConcept C151730666 @default.
- W4311796592 hasConcept C154945302 @default.
- W4311796592 hasConcept C158622935 @default.
- W4311796592 hasConcept C185429906 @default.
- W4311796592 hasConcept C19768560 @default.
- W4311796592 hasConcept C33923547 @default.
- W4311796592 hasConcept C41008148 @default.
- W4311796592 hasConcept C50644808 @default.
- W4311796592 hasConcept C62520636 @default.
- W4311796592 hasConcept C81363708 @default.
- W4311796592 hasConcept C86803240 @default.
- W4311796592 hasConceptScore W4311796592C105795698 @default.
- W4311796592 hasConceptScore W4311796592C11413529 @default.
- W4311796592 hasConceptScore W4311796592C121332964 @default.