Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311798475> ?p ?o ?g. }
- W4311798475 endingPage "368" @default.
- W4311798475 startingPage "350" @default.
- W4311798475 abstract "Abstract Reference evapotranspiration (ET0) is used to determine crop water requirements under different climatic conditions. In this study, soft computing tools viz. artificial neural network (ANN) and k-nearest neighbors (KNN) models were evaluated for forecasting daily ET0 by comparing their performance with the Penman-Monteith model (PM) using climatic data from 1990 to 2020 of the Indian Agricultural Research Institute (IARI) farm observatory, New Delhi, India. The performance of these models was assessed using statistical performance indices viz., mean absolute error (MAE), mean squared error (MSE), correlation coefficient (r), mean absolute percentage error (MAPE), and index of agreement (d). Results revealed that the ANN model with sigmoid activation function and L-BFGS (Limited memory-Broyden-Fletcher-Goldfarb-Shanno) learning algorithm was selected as the best performing model amongst 36 ANN models. Amongst 4 KNN models developed and tested, the K4 KNN model was observed to be the best in forecasting daily ET0. Overall, the best ANN model (M11) outperformed the K4 KNN model with MAE, MSE, r, MAPE, and d values of 0.075, 0.018, 0.997, 2.76 %, and 0.974, respectively and 0.091, 0.053, 0.984, 3.16 %, and 0.969, respectively during training and testing periods. Thus, we conclude that the ANN technique performed better than the KNN technique in forecasting daily ET0. Sensitivity analysis of the best ANN model revealed that wind speed was the most influential input variable compared to other weather parameters. Thus, the ANN model to forecast daily ET0 accurately for efficient irrigation scheduling of different crops in the study region may be recommended." @default.
- W4311798475 created "2022-12-28" @default.
- W4311798475 creator A5016049562 @default.
- W4311798475 creator A5054408400 @default.
- W4311798475 creator A5055601691 @default.
- W4311798475 creator A5059547897 @default.
- W4311798475 creator A5063330587 @default.
- W4311798475 creator A5073488832 @default.
- W4311798475 creator A5079659366 @default.
- W4311798475 date "2022-12-15" @default.
- W4311798475 modified "2023-10-17" @default.
- W4311798475 title "Performance evaluation of soft computing techniques for forecasting daily reference evapotranspiration" @default.
- W4311798475 cites W1972641521 @default.
- W4311798475 cites W1984974391 @default.
- W4311798475 cites W1992626024 @default.
- W4311798475 cites W2005126631 @default.
- W4311798475 cites W2020488014 @default.
- W4311798475 cites W2040696545 @default.
- W4311798475 cites W2052623509 @default.
- W4311798475 cites W2063851248 @default.
- W4311798475 cites W2088699921 @default.
- W4311798475 cites W2114824684 @default.
- W4311798475 cites W2122111042 @default.
- W4311798475 cites W2142827986 @default.
- W4311798475 cites W2322268344 @default.
- W4311798475 cites W2345957318 @default.
- W4311798475 cites W2594797697 @default.
- W4311798475 cites W2769452376 @default.
- W4311798475 cites W2896250689 @default.
- W4311798475 cites W2902709030 @default.
- W4311798475 cites W2947397189 @default.
- W4311798475 cites W2995153966 @default.
- W4311798475 cites W2998895100 @default.
- W4311798475 cites W3009328342 @default.
- W4311798475 cites W3010783886 @default.
- W4311798475 cites W3034776565 @default.
- W4311798475 cites W3035813928 @default.
- W4311798475 cites W3081175681 @default.
- W4311798475 cites W309569989 @default.
- W4311798475 cites W3119192682 @default.
- W4311798475 cites W3126940313 @default.
- W4311798475 cites W3193642949 @default.
- W4311798475 cites W3196594466 @default.
- W4311798475 cites W3200442999 @default.
- W4311798475 cites W3203914580 @default.
- W4311798475 cites W3208338065 @default.
- W4311798475 cites W4200187330 @default.
- W4311798475 cites W4200407991 @default.
- W4311798475 cites W4223479449 @default.
- W4311798475 cites W4233741429 @default.
- W4311798475 cites W4280623332 @default.
- W4311798475 cites W4281907808 @default.
- W4311798475 cites W4285164943 @default.
- W4311798475 cites W4312852379 @default.
- W4311798475 cites W4312973666 @default.
- W4311798475 doi "https://doi.org/10.2166/wcc.2022.385" @default.
- W4311798475 hasPublicationYear "2022" @default.
- W4311798475 type Work @default.
- W4311798475 citedByCount "4" @default.
- W4311798475 countsByYear W43117984752023 @default.
- W4311798475 crossrefType "journal-article" @default.
- W4311798475 hasAuthorship W4311798475A5016049562 @default.
- W4311798475 hasAuthorship W4311798475A5054408400 @default.
- W4311798475 hasAuthorship W4311798475A5055601691 @default.
- W4311798475 hasAuthorship W4311798475A5059547897 @default.
- W4311798475 hasAuthorship W4311798475A5063330587 @default.
- W4311798475 hasAuthorship W4311798475A5073488832 @default.
- W4311798475 hasAuthorship W4311798475A5079659366 @default.
- W4311798475 hasBestOaLocation W43117984751 @default.
- W4311798475 hasConcept C105795698 @default.
- W4311798475 hasConcept C128990827 @default.
- W4311798475 hasConcept C132721684 @default.
- W4311798475 hasConcept C139945424 @default.
- W4311798475 hasConcept C140073362 @default.
- W4311798475 hasConcept C150217764 @default.
- W4311798475 hasConcept C151319957 @default.
- W4311798475 hasConcept C154945302 @default.
- W4311798475 hasConcept C176783924 @default.
- W4311798475 hasConcept C188154048 @default.
- W4311798475 hasConcept C18903297 @default.
- W4311798475 hasConcept C2780092901 @default.
- W4311798475 hasConcept C31258907 @default.
- W4311798475 hasConcept C33923547 @default.
- W4311798475 hasConcept C41008148 @default.
- W4311798475 hasConcept C50644808 @default.
- W4311798475 hasConcept C86803240 @default.
- W4311798475 hasConceptScore W4311798475C105795698 @default.
- W4311798475 hasConceptScore W4311798475C128990827 @default.
- W4311798475 hasConceptScore W4311798475C132721684 @default.
- W4311798475 hasConceptScore W4311798475C139945424 @default.
- W4311798475 hasConceptScore W4311798475C140073362 @default.
- W4311798475 hasConceptScore W4311798475C150217764 @default.
- W4311798475 hasConceptScore W4311798475C151319957 @default.
- W4311798475 hasConceptScore W4311798475C154945302 @default.
- W4311798475 hasConceptScore W4311798475C176783924 @default.
- W4311798475 hasConceptScore W4311798475C188154048 @default.
- W4311798475 hasConceptScore W4311798475C18903297 @default.
- W4311798475 hasConceptScore W4311798475C2780092901 @default.