Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311802535> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4311802535 endingPage "2254" @default.
- W4311802535 startingPage "2254" @default.
- W4311802535 abstract "With the improvement in the intelligence level of UAVs and the development of cluster control technology, the intelligent decision-making method of UAV cluster confrontation will become the key technology of UAV combat in the future. The UAV cluster confrontation learning environment is of complex characteristics of high dimension, non-linearity, incomplete information, continuous action space, and so on. Recently, artificial intelligence technology represented by deep learning and reinforcement learning has made a great breakthrough. Deep reinforcement learning has shown a great ability to solve intelligent decision-making problems in complex environments. In this paper, enlightened by the multi-agent centralized training distributed execution framework and the idea of maximum policy entropy, we propose a deep reinforcement learning method of the multi-agent soft actor-critic (MASAC) with incomplete information. A game model for UAV cluster confrontation based on multi-agent deep reinforcement learning is established, and a continuous space multiple UAV combat environment is constructed. Simulation experiments are performed on the asymmetric confrontation of UAV clusters with red and blue teams. The experimental results show that MASAC outperforms the existing popular multi-agent deep reinforcement learning methods, making the game players converge to a higher return equilibrium point of the game. Moreover, the convergence of MASAC is investigated and analyzed extensively, and the results show that MASAC is of good convergence and stability, ensuring the practicability of MASAC in intelligent decision-making regarding UAV cluster confrontation." @default.
- W4311802535 created "2022-12-28" @default.
- W4311802535 creator A5015465252 @default.
- W4311802535 creator A5045224403 @default.
- W4311802535 creator A5054092582 @default.
- W4311802535 creator A5055138418 @default.
- W4311802535 creator A5055815897 @default.
- W4311802535 creator A5074781418 @default.
- W4311802535 creator A5080036759 @default.
- W4311802535 date "2022-12-01" @default.
- W4311802535 modified "2023-09-28" @default.
- W4311802535 title "MASAC-based confrontation game method of UAV clusters" @default.
- W4311802535 cites W1542941925 @default.
- W4311802535 cites W2075110355 @default.
- W4311802535 cites W2145339207 @default.
- W4311802535 cites W2169758488 @default.
- W4311802535 cites W2257979135 @default.
- W4311802535 cites W2746553466 @default.
- W4311802535 cites W2810602713 @default.
- W4311802535 cites W2902907165 @default.
- W4311802535 cites W2907841029 @default.
- W4311802535 cites W2966848886 @default.
- W4311802535 cites W2982316857 @default.
- W4311802535 cites W2996896271 @default.
- W4311802535 cites W3084343743 @default.
- W4311802535 cites W3113104257 @default.
- W4311802535 cites W3126884432 @default.
- W4311802535 cites W3136817238 @default.
- W4311802535 cites W3161537647 @default.
- W4311802535 cites W4280561843 @default.
- W4311802535 doi "https://doi.org/10.1360/ssi-2022-0303" @default.
- W4311802535 hasPublicationYear "2022" @default.
- W4311802535 type Work @default.
- W4311802535 citedByCount "0" @default.
- W4311802535 crossrefType "journal-article" @default.
- W4311802535 hasAuthorship W4311802535A5015465252 @default.
- W4311802535 hasAuthorship W4311802535A5045224403 @default.
- W4311802535 hasAuthorship W4311802535A5054092582 @default.
- W4311802535 hasAuthorship W4311802535A5055138418 @default.
- W4311802535 hasAuthorship W4311802535A5055815897 @default.
- W4311802535 hasAuthorship W4311802535A5074781418 @default.
- W4311802535 hasAuthorship W4311802535A5080036759 @default.
- W4311802535 hasConcept C154945302 @default.
- W4311802535 hasConcept C41008148 @default.
- W4311802535 hasConceptScore W4311802535C154945302 @default.
- W4311802535 hasConceptScore W4311802535C41008148 @default.
- W4311802535 hasIssue "12" @default.
- W4311802535 hasLocation W43118025351 @default.
- W4311802535 hasOpenAccess W4311802535 @default.
- W4311802535 hasPrimaryLocation W43118025351 @default.
- W4311802535 hasRelatedWork W2093578348 @default.
- W4311802535 hasRelatedWork W2096946506 @default.
- W4311802535 hasRelatedWork W2358668433 @default.
- W4311802535 hasRelatedWork W2376932109 @default.
- W4311802535 hasRelatedWork W2382290278 @default.
- W4311802535 hasRelatedWork W2390279801 @default.
- W4311802535 hasRelatedWork W2748952813 @default.
- W4311802535 hasRelatedWork W2766271392 @default.
- W4311802535 hasRelatedWork W2899084033 @default.
- W4311802535 hasRelatedWork W3107474891 @default.
- W4311802535 hasVolume "52" @default.
- W4311802535 isParatext "false" @default.
- W4311802535 isRetracted "false" @default.
- W4311802535 workType "article" @default.