Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311827861> ?p ?o ?g. }
- W4311827861 endingPage "e0010943" @default.
- W4311827861 startingPage "e0010943" @default.
- W4311827861 abstract "Though significant progress in disease elimination has been made over the past decades, trachoma is the leading infectious cause of blindness globally. Further efforts in trachoma elimination are paradoxically being limited by the relative rarity of the disease, which makes clinical training for monitoring surveys difficult. In this work, we evaluate the plausibility of an Artificial Intelligence model to augment or replace human image graders in the evaluation/diagnosis of trachomatous inflammation-follicular (TF).We utilized a dataset consisting of 2300 images with a 5% positivity rate for TF. We developed classifiers by implementing two state-of-the-art Convolutional Neural Network architectures, ResNet101 and VGG16, and applying a suite of data augmentation/oversampling techniques to the positive images. We then augmented our data set with additional images from independent research groups and evaluated performance.Models performed well in minimizing the number of false negatives, given the constraint of the low numbers of images in which TF was present. The best performing models achieved a sensitivity of 95% and positive predictive value of 50-70% while reducing the number images requiring skilled grading by 66-75%. Basic oversampling and data augmentation techniques were most successful at improving model performance, while techniques that are grounded in clinical experience, such as highlighting follicles, were less successful.The developed models perform well and significantly reduce the burden on graders by minimizing the number of false negative identifications. Further improvements in model skill will benefit from data sets with more TF as well as a range in image quality and image capture techniques used. While these models approach/meet the community-accepted standard for skilled field graders (i.e., Cohen's Kappa >0.7), they are insufficient to be deployed independently/clinically at this time; rather, they can be utilized to significantly reduce the burden on skilled image graders." @default.
- W4311827861 created "2022-12-29" @default.
- W4311827861 creator A5001272056 @default.
- W4311827861 creator A5005224275 @default.
- W4311827861 creator A5059007717 @default.
- W4311827861 creator A5089206390 @default.
- W4311827861 date "2022-12-07" @default.
- W4311827861 modified "2023-09-26" @default.
- W4311827861 title "Detection of trachoma using machine learning approaches" @default.
- W4311827861 cites W1942896941 @default.
- W4311827861 cites W1975473241 @default.
- W4311827861 cites W2001412060 @default.
- W4311827861 cites W2052006554 @default.
- W4311827861 cites W2110823243 @default.
- W4311827861 cites W2169961704 @default.
- W4311827861 cites W2194775991 @default.
- W4311827861 cites W2528856486 @default.
- W4311827861 cites W2595764414 @default.
- W4311827861 cites W2613527058 @default.
- W4311827861 cites W2694654282 @default.
- W4311827861 cites W2782436336 @default.
- W4311827861 cites W2809254203 @default.
- W4311827861 cites W2809598685 @default.
- W4311827861 cites W2886242934 @default.
- W4311827861 cites W2912865932 @default.
- W4311827861 cites W2939227390 @default.
- W4311827861 cites W2963849028 @default.
- W4311827861 cites W2988500707 @default.
- W4311827861 cites W2997310757 @default.
- W4311827861 cites W3015653440 @default.
- W4311827861 cites W3036075416 @default.
- W4311827861 cites W3036233586 @default.
- W4311827861 cites W3090423915 @default.
- W4311827861 cites W3092440389 @default.
- W4311827861 cites W3168997536 @default.
- W4311827861 cites W3180176682 @default.
- W4311827861 cites W3211533775 @default.
- W4311827861 cites W3217322430 @default.
- W4311827861 cites W4206348828 @default.
- W4311827861 cites W4223430324 @default.
- W4311827861 cites W4280576404 @default.
- W4311827861 doi "https://doi.org/10.1371/journal.pntd.0010943" @default.
- W4311827861 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36477293" @default.
- W4311827861 hasPublicationYear "2022" @default.
- W4311827861 type Work @default.
- W4311827861 citedByCount "1" @default.
- W4311827861 countsByYear W43118278612023 @default.
- W4311827861 crossrefType "journal-article" @default.
- W4311827861 hasAuthorship W4311827861A5001272056 @default.
- W4311827861 hasAuthorship W4311827861A5005224275 @default.
- W4311827861 hasAuthorship W4311827861A5059007717 @default.
- W4311827861 hasAuthorship W4311827861A5089206390 @default.
- W4311827861 hasBestOaLocation W43118278611 @default.
- W4311827861 hasConcept C119857082 @default.
- W4311827861 hasConcept C142724271 @default.
- W4311827861 hasConcept C153180895 @default.
- W4311827861 hasConcept C154945302 @default.
- W4311827861 hasConcept C173163844 @default.
- W4311827861 hasConcept C197323446 @default.
- W4311827861 hasConcept C2776246342 @default.
- W4311827861 hasConcept C2776257435 @default.
- W4311827861 hasConcept C2777034029 @default.
- W4311827861 hasConcept C2779134260 @default.
- W4311827861 hasConcept C31258907 @default.
- W4311827861 hasConcept C41008148 @default.
- W4311827861 hasConcept C71924100 @default.
- W4311827861 hasConcept C81363708 @default.
- W4311827861 hasConceptScore W4311827861C119857082 @default.
- W4311827861 hasConceptScore W4311827861C142724271 @default.
- W4311827861 hasConceptScore W4311827861C153180895 @default.
- W4311827861 hasConceptScore W4311827861C154945302 @default.
- W4311827861 hasConceptScore W4311827861C173163844 @default.
- W4311827861 hasConceptScore W4311827861C197323446 @default.
- W4311827861 hasConceptScore W4311827861C2776246342 @default.
- W4311827861 hasConceptScore W4311827861C2776257435 @default.
- W4311827861 hasConceptScore W4311827861C2777034029 @default.
- W4311827861 hasConceptScore W4311827861C2779134260 @default.
- W4311827861 hasConceptScore W4311827861C31258907 @default.
- W4311827861 hasConceptScore W4311827861C41008148 @default.
- W4311827861 hasConceptScore W4311827861C71924100 @default.
- W4311827861 hasConceptScore W4311827861C81363708 @default.
- W4311827861 hasIssue "12" @default.
- W4311827861 hasLocation W43118278611 @default.
- W4311827861 hasLocation W43118278612 @default.
- W4311827861 hasLocation W43118278613 @default.
- W4311827861 hasOpenAccess W4311827861 @default.
- W4311827861 hasPrimaryLocation W43118278611 @default.
- W4311827861 hasRelatedWork W1966028303 @default.
- W4311827861 hasRelatedWork W1985338680 @default.
- W4311827861 hasRelatedWork W2010380423 @default.
- W4311827861 hasRelatedWork W2767651786 @default.
- W4311827861 hasRelatedWork W2912288872 @default.
- W4311827861 hasRelatedWork W3021430260 @default.
- W4311827861 hasRelatedWork W3027997911 @default.
- W4311827861 hasRelatedWork W4206962509 @default.
- W4311827861 hasRelatedWork W4287776258 @default.
- W4311827861 hasRelatedWork W4311827861 @default.
- W4311827861 hasVolume "16" @default.