Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311837847> ?p ?o ?g. }
- W4311837847 endingPage "102326" @default.
- W4311837847 startingPage "102326" @default.
- W4311837847 abstract "The plant-associated microbiome is a key component of plant systems, contributing to their health, growth, and productivity. The application of machine learning (ML) in this field promises to help untangle the relationships involved. However, measurements of microbial communities by high-throughput sequencing pose challenges for ML. Noise from low sample sizes, soil heterogeneity, and technical factors can impact the performance of ML. Additionally, the compositional and sparse nature of these datasets can impact the predictive accuracy of ML. We review recent literature from plant studies to illustrate that these properties often go unmentioned. We expand our analysis to other fields to quantify the degree to which mitigation approaches improve the performance of ML and describe the mathematical basis for this. With the advent of accessible analytical packages for microbiome data including learning models, researchers must be familiar with the nature of their datasets." @default.
- W4311837847 created "2022-12-31" @default.
- W4311837847 creator A5001212028 @default.
- W4311837847 creator A5013764455 @default.
- W4311837847 creator A5020687927 @default.
- W4311837847 creator A5025061570 @default.
- W4311837847 creator A5039636100 @default.
- W4311837847 creator A5058395004 @default.
- W4311837847 creator A5076423086 @default.
- W4311837847 date "2023-02-01" @default.
- W4311837847 modified "2023-10-15" @default.
- W4311837847 title "Compositionality, sparsity, spurious heterogeneity, and other data-driven challenges for machine learning algorithms within plant microbiome studies" @default.
- W4311837847 cites W1513838499 @default.
- W4311837847 cites W1564554007 @default.
- W4311837847 cites W1968859440 @default.
- W4311837847 cites W1974809348 @default.
- W4311837847 cites W1999296654 @default.
- W4311837847 cites W2022080111 @default.
- W4311837847 cites W2026006003 @default.
- W4311837847 cites W2029607409 @default.
- W4311837847 cites W2030108859 @default.
- W4311837847 cites W2078112764 @default.
- W4311837847 cites W2082376470 @default.
- W4311837847 cites W2089722171 @default.
- W4311837847 cites W2107665951 @default.
- W4311837847 cites W2108718991 @default.
- W4311837847 cites W2113925621 @default.
- W4311837847 cites W2120288828 @default.
- W4311837847 cites W2134425065 @default.
- W4311837847 cites W2137499573 @default.
- W4311837847 cites W2140341891 @default.
- W4311837847 cites W2143201841 @default.
- W4311837847 cites W2146512944 @default.
- W4311837847 cites W2163169537 @default.
- W4311837847 cites W2167662727 @default.
- W4311837847 cites W2170486072 @default.
- W4311837847 cites W2193096068 @default.
- W4311837847 cites W2226553788 @default.
- W4311837847 cites W2230887875 @default.
- W4311837847 cites W2346423776 @default.
- W4311837847 cites W2462303459 @default.
- W4311837847 cites W2462800864 @default.
- W4311837847 cites W2487801161 @default.
- W4311837847 cites W2561012278 @default.
- W4311837847 cites W2604115100 @default.
- W4311837847 cites W2752517304 @default.
- W4311837847 cites W2769542288 @default.
- W4311837847 cites W2775633464 @default.
- W4311837847 cites W2782119243 @default.
- W4311837847 cites W2806408903 @default.
- W4311837847 cites W2808845633 @default.
- W4311837847 cites W2808937895 @default.
- W4311837847 cites W2809519941 @default.
- W4311837847 cites W2912656789 @default.
- W4311837847 cites W2919115771 @default.
- W4311837847 cites W2949724045 @default.
- W4311837847 cites W2950746887 @default.
- W4311837847 cites W2950985821 @default.
- W4311837847 cites W2951217100 @default.
- W4311837847 cites W2952463830 @default.
- W4311837847 cites W2953583829 @default.
- W4311837847 cites W2963276645 @default.
- W4311837847 cites W2963776453 @default.
- W4311837847 cites W2987640385 @default.
- W4311837847 cites W2991615383 @default.
- W4311837847 cites W2999175750 @default.
- W4311837847 cites W3000043994 @default.
- W4311837847 cites W3024771599 @default.
- W4311837847 cites W3026004291 @default.
- W4311837847 cites W3028351109 @default.
- W4311837847 cites W3029154092 @default.
- W4311837847 cites W3033330873 @default.
- W4311837847 cites W3040245690 @default.
- W4311837847 cites W3080176970 @default.
- W4311837847 cites W3080458156 @default.
- W4311837847 cites W3082076152 @default.
- W4311837847 cites W3097964496 @default.
- W4311837847 cites W3098026267 @default.
- W4311837847 cites W3113383091 @default.
- W4311837847 cites W3114522069 @default.
- W4311837847 cites W3120414327 @default.
- W4311837847 cites W3122216490 @default.
- W4311837847 cites W3127298225 @default.
- W4311837847 cites W3128411901 @default.
- W4311837847 cites W3130780712 @default.
- W4311837847 cites W3133908904 @default.
- W4311837847 cites W3134774591 @default.
- W4311837847 cites W3154720376 @default.
- W4311837847 cites W3165193178 @default.
- W4311837847 cites W3173513500 @default.
- W4311837847 cites W3174029804 @default.
- W4311837847 cites W3187943650 @default.
- W4311837847 cites W3197666941 @default.
- W4311837847 cites W3201418834 @default.
- W4311837847 cites W3202462308 @default.
- W4311837847 cites W3205642313 @default.
- W4311837847 cites W3206988630 @default.
- W4311837847 cites W3209674990 @default.