Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311850668> ?p ?o ?g. }
- W4311850668 endingPage "15508" @default.
- W4311850668 startingPage "15489" @default.
- W4311850668 abstract "Abstract. Atmospheric methane (CH4) concentrations have been rising since 2007 due to an imbalance between CH4 sources and sinks. The CH4 budget is generally estimated through top-down approaches using chemistry transport models (CTMs) and CH4 observations as constraints. The atmospheric isotopic CH4 composition, δ13C(CH4), can also provide additional constraints and helps to discriminate between emission categories. Nevertheless, to be able to use the information contained in these observations, the models must correctly account for processes influencing δ13C(CH4). The oxidation by chlorine (Cl) likely contributes less than 5 % to the total oxidation of atmospheric CH4. However, the large kinetic isotope effect of the Cl sink produces a large fractionation of 13C, compared with 12C in atmospheric CH4, and thus may strongly influence δ13C(CH4). When integrating the Cl sink in their setup to constrain the CH4 budget, which is not yet standard, atmospheric inversions prescribe different Cl fields, therefore leading to discrepancies between flux estimates. To quantify the influence of the Cl concentrations on CH4, δ13C(CH4), and CH4 budget estimates, we perform sensitivity simulations using four different Cl fields. We also test removing the tropospheric and the entire Cl sink. We find that the Cl fields tested here are responsible for between 0.3 % and 8.5 % of the total chemical CH4 sink in the troposphere and between 1.0 % and 1.6 % in the stratosphere. Prescribing these different Cl amounts in atmospheric inversions can lead to differences of up to 53.8 Tg CH4 yr−1 in global CH4 emissions and of up to 4.7 ‰ in the globally averaged isotopic signature of the CH4 source δ13C(CH4)source), although these differences are much smaller if only recent Cl fields are used. More specifically, each increase by 1000 molec.cm-3 in the mean tropospheric Cl concentration would result in an adjustment by +11.7 Tg CH4 yr−1, for global CH4 emissions, and −1.0 ‰, for the globally averaged δ13C(CH4)source. Our study also shows that the CH4 seasonal cycle amplitude is modified by less than 1 %–2 %, but the δ13C(CH4) seasonal cycle amplitude can be significantly modified by up to 10 %–20 %, depending on the latitude. In an atmospheric inversion performed with isotopic constraints, this influence can result in significant differences in the posterior source mixture. For example, the contribution from wetland emissions to the total emissions can be modified by about 0.8 % to adjust the globally averaged δ13C(CH4)source, corresponding to a 15 Tg CH4 yr−1 change. This adjustment is small compared to the current wetland source uncertainty, albeit far from negligible. Finally, tested Cl concentrations have a large influence on the simulated δ13C(CH4) vertical profiles above 30 km and a very small impact on the simulated CH4 vertical profiles. Overall, our model captures the observed CH4 and δ13C(CH4) vertical profiles well, especially in the troposphere, and it is difficult to prefer one Cl field over another based uniquely on the available observations of the vertical profiles." @default.
- W4311850668 created "2023-01-01" @default.
- W4311850668 creator A5004164849 @default.
- W4311850668 creator A5007406600 @default.
- W4311850668 creator A5018459762 @default.
- W4311850668 creator A5027270547 @default.
- W4311850668 creator A5028035645 @default.
- W4311850668 creator A5039584931 @default.
- W4311850668 creator A5041187627 @default.
- W4311850668 creator A5046878876 @default.
- W4311850668 date "2022-12-08" @default.
- W4311850668 modified "2023-10-18" @default.
- W4311850668 title "How do Cl concentrations matter for the simulation of CH<sub>4</sub> and <i>δ</i><sup>13</sup>C(CH<sub>4</sub>) and estimation of the CH<sub>4</sub> budget through atmospheric inversions?" @default.
- W4311850668 cites W1688224942 @default.
- W4311850668 cites W1851690937 @default.
- W4311850668 cites W1936615076 @default.
- W4311850668 cites W1961569888 @default.
- W4311850668 cites W1965288265 @default.
- W4311850668 cites W1968365949 @default.
- W4311850668 cites W1973727940 @default.
- W4311850668 cites W1975450074 @default.
- W4311850668 cites W1994987090 @default.
- W4311850668 cites W2001551409 @default.
- W4311850668 cites W2015111192 @default.
- W4311850668 cites W2015565958 @default.
- W4311850668 cites W2019157164 @default.
- W4311850668 cites W2021371905 @default.
- W4311850668 cites W2022065127 @default.
- W4311850668 cites W2038246200 @default.
- W4311850668 cites W2045201948 @default.
- W4311850668 cites W2052259821 @default.
- W4311850668 cites W2059849751 @default.
- W4311850668 cites W2067170749 @default.
- W4311850668 cites W2088098163 @default.
- W4311850668 cites W2089727804 @default.
- W4311850668 cites W2093502628 @default.
- W4311850668 cites W2093637199 @default.
- W4311850668 cites W2094368610 @default.
- W4311850668 cites W2097441736 @default.
- W4311850668 cites W2103978288 @default.
- W4311850668 cites W2109456522 @default.
- W4311850668 cites W2142652076 @default.
- W4311850668 cites W2145963862 @default.
- W4311850668 cites W2149739986 @default.
- W4311850668 cites W2151221501 @default.
- W4311850668 cites W2162744327 @default.
- W4311850668 cites W2175098853 @default.
- W4311850668 cites W2325510615 @default.
- W4311850668 cites W2407031000 @default.
- W4311850668 cites W2464792389 @default.
- W4311850668 cites W2472848642 @default.
- W4311850668 cites W2521005534 @default.
- W4311850668 cites W2525785449 @default.
- W4311850668 cites W2526949098 @default.
- W4311850668 cites W2528367698 @default.
- W4311850668 cites W2551689139 @default.
- W4311850668 cites W2603836813 @default.
- W4311850668 cites W2619280447 @default.
- W4311850668 cites W2788396641 @default.
- W4311850668 cites W2810386197 @default.
- W4311850668 cites W2897061907 @default.
- W4311850668 cites W2912377319 @default.
- W4311850668 cites W2917213968 @default.
- W4311850668 cites W2932536148 @default.
- W4311850668 cites W2932994671 @default.
- W4311850668 cites W2972407136 @default.
- W4311850668 cites W2989818437 @default.
- W4311850668 cites W3006192203 @default.
- W4311850668 cites W3037423973 @default.
- W4311850668 cites W3037953520 @default.
- W4311850668 cites W3128416817 @default.
- W4311850668 cites W3169909418 @default.
- W4311850668 cites W4283586523 @default.
- W4311850668 cites W4296058510 @default.
- W4311850668 doi "https://doi.org/10.5194/acp-22-15489-2022" @default.
- W4311850668 hasPublicationYear "2022" @default.
- W4311850668 type Work @default.
- W4311850668 citedByCount "2" @default.
- W4311850668 countsByYear W43118506682023 @default.
- W4311850668 crossrefType "journal-article" @default.
- W4311850668 hasAuthorship W4311850668A5004164849 @default.
- W4311850668 hasAuthorship W4311850668A5007406600 @default.
- W4311850668 hasAuthorship W4311850668A5018459762 @default.
- W4311850668 hasAuthorship W4311850668A5027270547 @default.
- W4311850668 hasAuthorship W4311850668A5028035645 @default.
- W4311850668 hasAuthorship W4311850668A5039584931 @default.
- W4311850668 hasAuthorship W4311850668A5041187627 @default.
- W4311850668 hasAuthorship W4311850668A5046878876 @default.
- W4311850668 hasBestOaLocation W43118506681 @default.
- W4311850668 hasConcept C107872376 @default.
- W4311850668 hasConcept C121332964 @default.
- W4311850668 hasConcept C143050476 @default.
- W4311850668 hasConcept C163861444 @default.
- W4311850668 hasConcept C178790620 @default.
- W4311850668 hasConcept C185592680 @default.
- W4311850668 hasConcept C205649164 @default.
- W4311850668 hasConcept C39432304 @default.
- W4311850668 hasConcept C49999975 @default.