Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311853325> ?p ?o ?g. }
- W4311853325 abstract "Background Plasma cells as an important component of immune microenvironment plays a crucial role in immune escape and are closely related to immune therapy response. However, its role for prostate cancer is rarely understood. In this study, we intend to investigate the value of a new plasma cell molecular subtype for predicting the biochemical recurrence, immune escape and immunotherapy response in prostate cancer. Methods Gene expression and clinicopathological data were collected from 481 prostate cancer patients in the Cancer Genome Atlas. Then, the immune characteristics of the patients were analyzed based on plasma cell infiltration fractions. The unsupervised clustering based machine learning algorithm was used to identify the molecular subtypes of the plasma cell. And the characteristic genes of plasma cell subtypes were screened out by three types of machine learning models to establish an artificial neural network for predicting plasma cell subtypes. Finally, the prediction artificial neural network of plasma cell infiltration subtypes was validated in an independent cohort of 449 prostate cancer patients from the Gene Expression Omnibus. Results The plasma cell fraction in prostate cancer was significantly decreased in tumors with high T stage, high Gleason score and lymph node metastasis. In addition, low plasma cell fraction patients had a higher risk of biochemical recurrence. Based on the differential genes of plasma cells, plasma cell infiltration status of PCa patients were divided into two independent molecular subtypes(subtype 1 and subtype 2). Subtype 1 tends to be immunosuppressive plasma cells infiltrating to the PCa region, with a higher likelihood of biochemical recurrence, more active immune microenvironment, and stronger immune escape potential, leading to a poor response to immunotherapy. Subsequently, 10 characteristic genes of plasma cell subtype were screened out by three machine learning algorithms. Finally, an artificial neural network was constructed by those 10 genes to predict the plasma cell subtype of new patients. This artificial neural network was validated in an independent validation set, and the similar results were gained. Conclusions Plasma cell infiltration subtypes could provide a potent prognostic predictor for prostate cancer and be an option for potential responders to prostate cancer immunotherapy." @default.
- W4311853325 created "2023-01-01" @default.
- W4311853325 creator A5000227571 @default.
- W4311853325 creator A5010111611 @default.
- W4311853325 creator A5016406818 @default.
- W4311853325 creator A5025314440 @default.
- W4311853325 creator A5029053393 @default.
- W4311853325 creator A5030064573 @default.
- W4311853325 creator A5030314348 @default.
- W4311853325 creator A5030537255 @default.
- W4311853325 creator A5055223470 @default.
- W4311853325 creator A5061906067 @default.
- W4311853325 creator A5063255987 @default.
- W4311853325 creator A5070724089 @default.
- W4311853325 creator A5072035000 @default.
- W4311853325 creator A5077472823 @default.
- W4311853325 creator A5084550565 @default.
- W4311853325 creator A5086482529 @default.
- W4311853325 creator A5089677359 @default.
- W4311853325 date "2022-12-08" @default.
- W4311853325 modified "2023-10-15" @default.
- W4311853325 title "Plasma cell subtypes analyzed using artificial intelligence algorithm for predicting biochemical recurrence, immune escape potential, and immunotherapy response of prostate cancer" @default.
- W4311853325 cites W1107917109 @default.
- W4311853325 cites W1684904284 @default.
- W4311853325 cites W1900564636 @default.
- W4311853325 cites W1966107523 @default.
- W4311853325 cites W1979811833 @default.
- W4311853325 cites W1980313076 @default.
- W4311853325 cites W1985987855 @default.
- W4311853325 cites W1988580039 @default.
- W4311853325 cites W2010457001 @default.
- W4311853325 cites W2042699075 @default.
- W4311853325 cites W2060469376 @default.
- W4311853325 cites W2107564978 @default.
- W4311853325 cites W2107665951 @default.
- W4311853325 cites W2115462905 @default.
- W4311853325 cites W2130430382 @default.
- W4311853325 cites W2146512944 @default.
- W4311853325 cites W2154270347 @default.
- W4311853325 cites W2155995527 @default.
- W4311853325 cites W2156928739 @default.
- W4311853325 cites W2159707944 @default.
- W4311853325 cites W2170134016 @default.
- W4311853325 cites W2234923158 @default.
- W4311853325 cites W2239864556 @default.
- W4311853325 cites W2252919733 @default.
- W4311853325 cites W2328673944 @default.
- W4311853325 cites W2345568581 @default.
- W4311853325 cites W2531934133 @default.
- W4311853325 cites W2560339139 @default.
- W4311853325 cites W2582414407 @default.
- W4311853325 cites W2654384024 @default.
- W4311853325 cites W2727705472 @default.
- W4311853325 cites W2761180418 @default.
- W4311853325 cites W2781525129 @default.
- W4311853325 cites W2788975052 @default.
- W4311853325 cites W2807036076 @default.
- W4311853325 cites W2886498337 @default.
- W4311853325 cites W2887137621 @default.
- W4311853325 cites W2902954996 @default.
- W4311853325 cites W2937823726 @default.
- W4311853325 cites W2964121744 @default.
- W4311853325 cites W3001895421 @default.
- W4311853325 cites W3007043088 @default.
- W4311853325 cites W3008451822 @default.
- W4311853325 cites W3012105756 @default.
- W4311853325 cites W3012668557 @default.
- W4311853325 cites W3048865057 @default.
- W4311853325 cites W3084329990 @default.
- W4311853325 cites W3093666406 @default.
- W4311853325 cites W3111627896 @default.
- W4311853325 cites W3120833111 @default.
- W4311853325 cites W3125504885 @default.
- W4311853325 cites W3165327772 @default.
- W4311853325 cites W3175025143 @default.
- W4311853325 cites W3206513803 @default.
- W4311853325 cites W3210402627 @default.
- W4311853325 cites W3217349935 @default.
- W4311853325 cites W4213441758 @default.
- W4311853325 cites W4249028950 @default.
- W4311853325 cites W4376595336 @default.
- W4311853325 doi "https://doi.org/10.3389/fimmu.2022.946209" @default.
- W4311853325 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36569837" @default.
- W4311853325 hasPublicationYear "2022" @default.
- W4311853325 type Work @default.
- W4311853325 citedByCount "2" @default.
- W4311853325 countsByYear W43118533252023 @default.
- W4311853325 crossrefType "journal-article" @default.
- W4311853325 hasAuthorship W4311853325A5000227571 @default.
- W4311853325 hasAuthorship W4311853325A5010111611 @default.
- W4311853325 hasAuthorship W4311853325A5016406818 @default.
- W4311853325 hasAuthorship W4311853325A5025314440 @default.
- W4311853325 hasAuthorship W4311853325A5029053393 @default.
- W4311853325 hasAuthorship W4311853325A5030064573 @default.
- W4311853325 hasAuthorship W4311853325A5030314348 @default.
- W4311853325 hasAuthorship W4311853325A5030537255 @default.
- W4311853325 hasAuthorship W4311853325A5055223470 @default.
- W4311853325 hasAuthorship W4311853325A5061906067 @default.
- W4311853325 hasAuthorship W4311853325A5063255987 @default.
- W4311853325 hasAuthorship W4311853325A5070724089 @default.