Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311854941> ?p ?o ?g. }
- W4311854941 endingPage "015118" @default.
- W4311854941 startingPage "015118" @default.
- W4311854941 abstract "We propose spatiotemporal deep neural networks for the time-resolved reconstruction of the velocity field around a circular cylinder (DeepTRNet) based only on two flow data types: the non-time-resolved wake velocity field and sparse time-resolved velocity measurements at specific discrete points. The DeepTRNet consists of two operations, i.e., compact spatial representations extraction and sequential learning. We use the convolutional autoencoder (CAE) in DeepTRNet to extract compact spatial representations embedded in the non-time-resolved velocity field. The nonlinear CAE modes and corresponding CAE coefficients are thus obtained. Based on the nonlinear correlation analysis of the velocity field, we use the bidirectional recurrent neural networks (RNN) with the gated recurrent unit for mapping the sparse time-resolved velocity measurements to the CAE coefficients via sequential learning. The early stopping technique is used to train the DeepTRNet to avoid overfitting. With the well-trained DeepTRNet, we can reconstruct the time-resolved velocity field around the circular cylinder. The DeepTRNet is verified on the simulated datasets at two representative Reynolds numbers, 200 and 500, and the experimental dataset at Reynolds number 3.3 × 10 4 with the steady jet at the rear stagnation point of the cylinder. We systematically compare the DeepTRNet method and the RNN-proper orthogonal decomposition (POD) approach. The DeepTRNet can obtain the accurate time-resolved velocity field depending on the two data types mentioned above. The DeepTRNet method outperforms the RNN-POD method in the reconstruction accuracy, especially for the reconstruction of small-scale flow structures. In addition, we get the reliable velocity field even for the high-frequency components." @default.
- W4311854941 created "2023-01-01" @default.
- W4311854941 creator A5012020061 @default.
- W4311854941 creator A5012893490 @default.
- W4311854941 creator A5033307808 @default.
- W4311854941 creator A5036026043 @default.
- W4311854941 creator A5070830629 @default.
- W4311854941 date "2023-01-01" @default.
- W4311854941 modified "2023-10-11" @default.
- W4311854941 title "DeepTRNet: Time-resolved reconstruction of flow around a circular cylinder via spatiotemporal deep neural networks" @default.
- W4311854941 cites W1527430455 @default.
- W4311854941 cites W1633869374 @default.
- W4311854941 cites W1992189541 @default.
- W4311854941 cites W2034963693 @default.
- W4311854941 cites W2038409881 @default.
- W4311854941 cites W2049753327 @default.
- W4311854941 cites W2064675550 @default.
- W4311854941 cites W2083676914 @default.
- W4311854941 cites W2100495367 @default.
- W4311854941 cites W2131774270 @default.
- W4311854941 cites W2137269932 @default.
- W4311854941 cites W2150067632 @default.
- W4311854941 cites W2157331557 @default.
- W4311854941 cites W2346765390 @default.
- W4311854941 cites W2476086431 @default.
- W4311854941 cites W2563263390 @default.
- W4311854941 cites W2565264375 @default.
- W4311854941 cites W2622487373 @default.
- W4311854941 cites W2777417212 @default.
- W4311854941 cites W2801938748 @default.
- W4311854941 cites W2916853398 @default.
- W4311854941 cites W2961350526 @default.
- W4311854941 cites W2967095864 @default.
- W4311854941 cites W2987245967 @default.
- W4311854941 cites W3010839048 @default.
- W4311854941 cites W3015823212 @default.
- W4311854941 cites W3034037399 @default.
- W4311854941 cites W3035246486 @default.
- W4311854941 cites W3035295279 @default.
- W4311854941 cites W3048524198 @default.
- W4311854941 cites W3099969702 @default.
- W4311854941 cites W3102140816 @default.
- W4311854941 cites W3113205804 @default.
- W4311854941 cites W3123789135 @default.
- W4311854941 cites W3206632135 @default.
- W4311854941 cites W3206806480 @default.
- W4311854941 cites W4200046696 @default.
- W4311854941 cites W4214645825 @default.
- W4311854941 cites W4220715685 @default.
- W4311854941 cites W4220800106 @default.
- W4311854941 cites W4280617908 @default.
- W4311854941 cites W4283830170 @default.
- W4311854941 cites W4309121974 @default.
- W4311854941 doi "https://doi.org/10.1063/5.0129049" @default.
- W4311854941 hasPublicationYear "2023" @default.
- W4311854941 type Work @default.
- W4311854941 citedByCount "6" @default.
- W4311854941 countsByYear W43118549412023 @default.
- W4311854941 crossrefType "journal-article" @default.
- W4311854941 hasAuthorship W4311854941A5012020061 @default.
- W4311854941 hasAuthorship W4311854941A5012893490 @default.
- W4311854941 hasAuthorship W4311854941A5033307808 @default.
- W4311854941 hasAuthorship W4311854941A5036026043 @default.
- W4311854941 hasAuthorship W4311854941A5070830629 @default.
- W4311854941 hasConcept C101738243 @default.
- W4311854941 hasConcept C108583219 @default.
- W4311854941 hasConcept C11413529 @default.
- W4311854941 hasConcept C121332964 @default.
- W4311854941 hasConcept C134306372 @default.
- W4311854941 hasConcept C147168706 @default.
- W4311854941 hasConcept C153180895 @default.
- W4311854941 hasConcept C154945302 @default.
- W4311854941 hasConcept C158622935 @default.
- W4311854941 hasConcept C182748727 @default.
- W4311854941 hasConcept C196558001 @default.
- W4311854941 hasConcept C202444582 @default.
- W4311854941 hasConcept C203311528 @default.
- W4311854941 hasConcept C2524010 @default.
- W4311854941 hasConcept C33923547 @default.
- W4311854941 hasConcept C38349280 @default.
- W4311854941 hasConcept C41008148 @default.
- W4311854941 hasConcept C50644808 @default.
- W4311854941 hasConcept C57879066 @default.
- W4311854941 hasConcept C62520636 @default.
- W4311854941 hasConcept C81363708 @default.
- W4311854941 hasConcept C91188154 @default.
- W4311854941 hasConcept C9652623 @default.
- W4311854941 hasConceptScore W4311854941C101738243 @default.
- W4311854941 hasConceptScore W4311854941C108583219 @default.
- W4311854941 hasConceptScore W4311854941C11413529 @default.
- W4311854941 hasConceptScore W4311854941C121332964 @default.
- W4311854941 hasConceptScore W4311854941C134306372 @default.
- W4311854941 hasConceptScore W4311854941C147168706 @default.
- W4311854941 hasConceptScore W4311854941C153180895 @default.
- W4311854941 hasConceptScore W4311854941C154945302 @default.
- W4311854941 hasConceptScore W4311854941C158622935 @default.
- W4311854941 hasConceptScore W4311854941C182748727 @default.
- W4311854941 hasConceptScore W4311854941C196558001 @default.