Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311858035> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4311858035 abstract "Introduction Sentence-level complexity evaluation (SCE) can be formulated as assigning a given sentence a complexity score: either as a category, or a single value. SCE task can be treated as an intermediate step for text complexity prediction, text simplification, lexical complexity prediction, etc. What is more, robust prediction of a single sentence complexity needs much shorter text fragments than the ones typically required to robustly evaluate text complexity. Morphosyntactic and lexical features have proved their vital role as predictors in the state-of-the-art deep neural models for sentence categorization. However, a common issue is the interpretability of deep neural network results. Methods This paper presents testing and comparing several approaches to predict both absolute and relative sentence complexity in Russian. The evaluation involves Russian BERT, Transformer, SVM with features from sentence embeddings, and a graph neural network. Such a comparison is done for the first time for the Russian language. Results and discussion Pre-trained language models outperform graph neural networks, that incorporate the syntactical dependency tree of a sentence. The graph neural networks perform better than Transformer and SVM classifiers that employ sentence embeddings. Predictions of the proposed graph neural network architecture can be easily explained." @default.
- W4311858035 created "2023-01-01" @default.
- W4311858035 creator A5027273039 @default.
- W4311858035 date "2022-12-08" @default.
- W4311858035 modified "2023-10-01" @default.
- W4311858035 title "Sentence-level complexity in Russian: An evaluation of BERT and graph neural networks" @default.
- W4311858035 cites W1982643343 @default.
- W4311858035 cites W2104924975 @default.
- W4311858035 cites W2252206005 @default.
- W4311858035 cites W2493916176 @default.
- W4311858035 cites W2799616435 @default.
- W4311858035 cites W2891407789 @default.
- W4311858035 cites W2963513671 @default.
- W4311858035 cites W3011124205 @default.
- W4311858035 cites W3080555959 @default.
- W4311858035 cites W3170703802 @default.
- W4311858035 cites W3185421637 @default.
- W4311858035 cites W3214608493 @default.
- W4311858035 cites W4206333944 @default.
- W4311858035 cites W4210257598 @default.
- W4311858035 cites W4322096467 @default.
- W4311858035 doi "https://doi.org/10.3389/frai.2022.1008411" @default.
- W4311858035 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36568579" @default.
- W4311858035 hasPublicationYear "2022" @default.
- W4311858035 type Work @default.
- W4311858035 citedByCount "0" @default.
- W4311858035 crossrefType "journal-article" @default.
- W4311858035 hasAuthorship W4311858035A5027273039 @default.
- W4311858035 hasBestOaLocation W43118580351 @default.
- W4311858035 hasConcept C121332964 @default.
- W4311858035 hasConcept C132525143 @default.
- W4311858035 hasConcept C154945302 @default.
- W4311858035 hasConcept C165801399 @default.
- W4311858035 hasConcept C204321447 @default.
- W4311858035 hasConcept C2777530160 @default.
- W4311858035 hasConcept C2781067378 @default.
- W4311858035 hasConcept C41008148 @default.
- W4311858035 hasConcept C50644808 @default.
- W4311858035 hasConcept C62520636 @default.
- W4311858035 hasConcept C66322947 @default.
- W4311858035 hasConcept C80444323 @default.
- W4311858035 hasConcept C94124525 @default.
- W4311858035 hasConceptScore W4311858035C121332964 @default.
- W4311858035 hasConceptScore W4311858035C132525143 @default.
- W4311858035 hasConceptScore W4311858035C154945302 @default.
- W4311858035 hasConceptScore W4311858035C165801399 @default.
- W4311858035 hasConceptScore W4311858035C204321447 @default.
- W4311858035 hasConceptScore W4311858035C2777530160 @default.
- W4311858035 hasConceptScore W4311858035C2781067378 @default.
- W4311858035 hasConceptScore W4311858035C41008148 @default.
- W4311858035 hasConceptScore W4311858035C50644808 @default.
- W4311858035 hasConceptScore W4311858035C62520636 @default.
- W4311858035 hasConceptScore W4311858035C66322947 @default.
- W4311858035 hasConceptScore W4311858035C80444323 @default.
- W4311858035 hasConceptScore W4311858035C94124525 @default.
- W4311858035 hasLocation W43118580351 @default.
- W4311858035 hasLocation W43118580352 @default.
- W4311858035 hasLocation W43118580353 @default.
- W4311858035 hasLocation W43118580354 @default.
- W4311858035 hasOpenAccess W4311858035 @default.
- W4311858035 hasPrimaryLocation W43118580351 @default.
- W4311858035 hasRelatedWork W159132833 @default.
- W4311858035 hasRelatedWork W2365213443 @default.
- W4311858035 hasRelatedWork W2947762898 @default.
- W4311858035 hasRelatedWork W2968260065 @default.
- W4311858035 hasRelatedWork W4206534706 @default.
- W4311858035 hasRelatedWork W4307308917 @default.
- W4311858035 hasRelatedWork W4318978824 @default.
- W4311858035 hasRelatedWork W4385573168 @default.
- W4311858035 hasRelatedWork W4385873483 @default.
- W4311858035 hasRelatedWork W4385877744 @default.
- W4311858035 hasVolume "5" @default.
- W4311858035 isParatext "false" @default.
- W4311858035 isRetracted "false" @default.
- W4311858035 workType "article" @default.