Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311862203> ?p ?o ?g. }
- W4311862203 endingPage "520" @default.
- W4311862203 startingPage "520" @default.
- W4311862203 abstract "In this study, a non-labeled sensor system for direct determining human glycated albumin levels for medical application is proposed. Using machine learning methods applied to surface-enhanced Raman scattering (SERS) spectra of human glycated albumin and serum human albumin enabled the avoidance of complex sample preparation. By implementing linear discriminant analysis and regularized linear regression, classification and regression problems were solved based on the spectra obtained as a result of the experiment. The results show that, coupled with data augmentation and a special cross-validation procedure, the methods we employed yield better results in the corresponding tasks in comparison with popular random forest methods and the support vector method. The results show that SERS, in combination with machine learning methods, can be a powerful and effective tool for the simple and direct assay of protein mixtures." @default.
- W4311862203 created "2023-01-01" @default.
- W4311862203 creator A5002327671 @default.
- W4311862203 creator A5006074337 @default.
- W4311862203 creator A5016920932 @default.
- W4311862203 creator A5040725653 @default.
- W4311862203 creator A5046157786 @default.
- W4311862203 creator A5062286041 @default.
- W4311862203 creator A5065825812 @default.
- W4311862203 creator A5068905735 @default.
- W4311862203 creator A5074722722 @default.
- W4311862203 creator A5084536168 @default.
- W4311862203 date "2022-12-07" @default.
- W4311862203 modified "2023-09-27" @default.
- W4311862203 title "SERS Sensor for Human Glycated Albumin Direct Assay Based on Machine Learning Methods" @default.
- W4311862203 cites W2024895662 @default.
- W4311862203 cites W2026464248 @default.
- W4311862203 cites W2027579223 @default.
- W4311862203 cites W2027835374 @default.
- W4311862203 cites W2039559580 @default.
- W4311862203 cites W2041282492 @default.
- W4311862203 cites W2043447398 @default.
- W4311862203 cites W2044733039 @default.
- W4311862203 cites W2045585226 @default.
- W4311862203 cites W2052114657 @default.
- W4311862203 cites W2058918489 @default.
- W4311862203 cites W2066599994 @default.
- W4311862203 cites W2072794138 @default.
- W4311862203 cites W2073302777 @default.
- W4311862203 cites W2089757369 @default.
- W4311862203 cites W2103151817 @default.
- W4311862203 cites W2122825543 @default.
- W4311862203 cites W2131404623 @default.
- W4311862203 cites W2138685848 @default.
- W4311862203 cites W2157100111 @default.
- W4311862203 cites W2183163381 @default.
- W4311862203 cites W22591588 @default.
- W4311862203 cites W2301954252 @default.
- W4311862203 cites W2567146820 @default.
- W4311862203 cites W2781714484 @default.
- W4311862203 cites W2914559551 @default.
- W4311862203 cites W2938789811 @default.
- W4311862203 cites W2977127464 @default.
- W4311862203 cites W2990581967 @default.
- W4311862203 cites W2993303898 @default.
- W4311862203 cites W3009139305 @default.
- W4311862203 cites W3046429102 @default.
- W4311862203 cites W3084610221 @default.
- W4311862203 cites W3087436661 @default.
- W4311862203 cites W3121555058 @default.
- W4311862203 cites W4282586961 @default.
- W4311862203 cites W4291015953 @default.
- W4311862203 cites W2783347388 @default.
- W4311862203 doi "https://doi.org/10.3390/chemosensors10120520" @default.
- W4311862203 hasPublicationYear "2022" @default.
- W4311862203 type Work @default.
- W4311862203 citedByCount "1" @default.
- W4311862203 countsByYear W43118622032023 @default.
- W4311862203 crossrefType "journal-article" @default.
- W4311862203 hasAuthorship W4311862203A5002327671 @default.
- W4311862203 hasAuthorship W4311862203A5006074337 @default.
- W4311862203 hasAuthorship W4311862203A5016920932 @default.
- W4311862203 hasAuthorship W4311862203A5040725653 @default.
- W4311862203 hasAuthorship W4311862203A5046157786 @default.
- W4311862203 hasAuthorship W4311862203A5062286041 @default.
- W4311862203 hasAuthorship W4311862203A5065825812 @default.
- W4311862203 hasAuthorship W4311862203A5068905735 @default.
- W4311862203 hasAuthorship W4311862203A5074722722 @default.
- W4311862203 hasAuthorship W4311862203A5084536168 @default.
- W4311862203 hasBestOaLocation W43118622031 @default.
- W4311862203 hasConcept C119857082 @default.
- W4311862203 hasConcept C12267149 @default.
- W4311862203 hasConcept C153180895 @default.
- W4311862203 hasConcept C154945302 @default.
- W4311862203 hasConcept C169258074 @default.
- W4311862203 hasConcept C185592680 @default.
- W4311862203 hasConcept C2776125364 @default.
- W4311862203 hasConcept C2778597219 @default.
- W4311862203 hasConcept C3019038604 @default.
- W4311862203 hasConcept C41008148 @default.
- W4311862203 hasConcept C43617362 @default.
- W4311862203 hasConcept C48921125 @default.
- W4311862203 hasConcept C55493867 @default.
- W4311862203 hasConcept C69738355 @default.
- W4311862203 hasConceptScore W4311862203C119857082 @default.
- W4311862203 hasConceptScore W4311862203C12267149 @default.
- W4311862203 hasConceptScore W4311862203C153180895 @default.
- W4311862203 hasConceptScore W4311862203C154945302 @default.
- W4311862203 hasConceptScore W4311862203C169258074 @default.
- W4311862203 hasConceptScore W4311862203C185592680 @default.
- W4311862203 hasConceptScore W4311862203C2776125364 @default.
- W4311862203 hasConceptScore W4311862203C2778597219 @default.
- W4311862203 hasConceptScore W4311862203C3019038604 @default.
- W4311862203 hasConceptScore W4311862203C41008148 @default.
- W4311862203 hasConceptScore W4311862203C43617362 @default.
- W4311862203 hasConceptScore W4311862203C48921125 @default.
- W4311862203 hasConceptScore W4311862203C55493867 @default.
- W4311862203 hasConceptScore W4311862203C69738355 @default.