Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311876054> ?p ?o ?g. }
- W4311876054 endingPage "2259" @default.
- W4311876054 startingPage "2229" @default.
- W4311876054 abstract "Abstract The development of models for the coefficient of friction is difficult due to many factors influencing its value and many tribological phenomena that accompany contact between metals (i.e., flattening, ploughing, adhesion), the influence of which also depends on the friction conditions. Therefore, developing an analytical model of friction is difficult. In this article, the CatBoost machine learning algorithm, newly developed by Yandex researchers and engineers, is used for modelling and parameter identification of friction coefficients for three grades of deep-drawing quality steel sheets. Experimental tests to determine the friction coefficient were carried out using the strip drawing method with the use of a specially designed tribological device. Lubrication conditions, normal force, and the surface roughness of countersample surfaces were used as input parameters. The friction tests were conducted in dry friction and lubricated conditions with three grades of oils with a wide range of viscosities. Different transfer functions and various training algorithms were tested to build the optimal structure of the artificial neural networks. An analytical equation based on the parameters that were being investigated was created to calculate the COF of each material. Different methods of partitioning weight were employed for the expected COF to assess the relative importance (RI) and individual feature’s relevance. A Shapley decision plot, which uses cumulative Shapley additive explanations (SHAP) values, was used to depict models for predicting COF. CatBoost was able to predict the coefficient of friction with R 2 values between 0.9547 and 0.9693 as an average for the training and testing dataset, depending on the grade of steel sheet. When considering all the materials that were tested, it was discovered that the Levenberg–Marquardt training algorithm performed the best in predicting the coefficient of friction." @default.
- W4311876054 created "2023-01-02" @default.
- W4311876054 creator A5019036464 @default.
- W4311876054 creator A5038716026 @default.
- W4311876054 creator A5071990214 @default.
- W4311876054 date "2022-12-08" @default.
- W4311876054 modified "2023-10-18" @default.
- W4311876054 title "Modelling and parameter identification of coefficient of friction for deep-drawing quality steel sheets using the CatBoost machine learning algorithm and neural networks" @default.
- W4311876054 cites W1516592661 @default.
- W4311876054 cites W1586335931 @default.
- W4311876054 cites W1787224781 @default.
- W4311876054 cites W1985031677 @default.
- W4311876054 cites W1988490711 @default.
- W4311876054 cites W1990484745 @default.
- W4311876054 cites W2006886729 @default.
- W4311876054 cites W2008978101 @default.
- W4311876054 cites W2009927598 @default.
- W4311876054 cites W2015958959 @default.
- W4311876054 cites W2038232259 @default.
- W4311876054 cites W2040716974 @default.
- W4311876054 cites W2041631774 @default.
- W4311876054 cites W2048434502 @default.
- W4311876054 cites W2049930170 @default.
- W4311876054 cites W2066208282 @default.
- W4311876054 cites W2081850396 @default.
- W4311876054 cites W2091829949 @default.
- W4311876054 cites W2092229437 @default.
- W4311876054 cites W2106100979 @default.
- W4311876054 cites W2106193008 @default.
- W4311876054 cites W2129888542 @default.
- W4311876054 cites W2141672845 @default.
- W4311876054 cites W2157781926 @default.
- W4311876054 cites W2282821441 @default.
- W4311876054 cites W2533491448 @default.
- W4311876054 cites W2566379113 @default.
- W4311876054 cites W2615756611 @default.
- W4311876054 cites W2759020658 @default.
- W4311876054 cites W2782069613 @default.
- W4311876054 cites W2785093363 @default.
- W4311876054 cites W2893062262 @default.
- W4311876054 cites W2895504840 @default.
- W4311876054 cites W2905616717 @default.
- W4311876054 cites W2930061779 @default.
- W4311876054 cites W2947945101 @default.
- W4311876054 cites W2948310693 @default.
- W4311876054 cites W2966508692 @default.
- W4311876054 cites W3082671360 @default.
- W4311876054 cites W3092718207 @default.
- W4311876054 cites W3101440625 @default.
- W4311876054 cites W3113471983 @default.
- W4311876054 cites W3153224544 @default.
- W4311876054 cites W3173715003 @default.
- W4311876054 cites W3175460054 @default.
- W4311876054 cites W3185261888 @default.
- W4311876054 cites W3197982391 @default.
- W4311876054 cites W3217018074 @default.
- W4311876054 cites W4225287921 @default.
- W4311876054 cites W4249040305 @default.
- W4311876054 doi "https://doi.org/10.1007/s00170-022-10544-1" @default.
- W4311876054 hasPublicationYear "2022" @default.
- W4311876054 type Work @default.
- W4311876054 citedByCount "1" @default.
- W4311876054 countsByYear W43118760542023 @default.
- W4311876054 crossrefType "journal-article" @default.
- W4311876054 hasAuthorship W4311876054A5019036464 @default.
- W4311876054 hasAuthorship W4311876054A5038716026 @default.
- W4311876054 hasAuthorship W4311876054A5071990214 @default.
- W4311876054 hasBestOaLocation W43118760541 @default.
- W4311876054 hasConcept C107365816 @default.
- W4311876054 hasConcept C111472728 @default.
- W4311876054 hasConcept C11413529 @default.
- W4311876054 hasConcept C119857082 @default.
- W4311876054 hasConcept C127413603 @default.
- W4311876054 hasConcept C138885662 @default.
- W4311876054 hasConcept C154945302 @default.
- W4311876054 hasConcept C159985019 @default.
- W4311876054 hasConcept C167310744 @default.
- W4311876054 hasConcept C184608416 @default.
- W4311876054 hasConcept C192562407 @default.
- W4311876054 hasConcept C2779530757 @default.
- W4311876054 hasConcept C41008148 @default.
- W4311876054 hasConcept C50644808 @default.
- W4311876054 hasConcept C71039073 @default.
- W4311876054 hasConcept C78519656 @default.
- W4311876054 hasConceptScore W4311876054C107365816 @default.
- W4311876054 hasConceptScore W4311876054C111472728 @default.
- W4311876054 hasConceptScore W4311876054C11413529 @default.
- W4311876054 hasConceptScore W4311876054C119857082 @default.
- W4311876054 hasConceptScore W4311876054C127413603 @default.
- W4311876054 hasConceptScore W4311876054C138885662 @default.
- W4311876054 hasConceptScore W4311876054C154945302 @default.
- W4311876054 hasConceptScore W4311876054C159985019 @default.
- W4311876054 hasConceptScore W4311876054C167310744 @default.
- W4311876054 hasConceptScore W4311876054C184608416 @default.
- W4311876054 hasConceptScore W4311876054C192562407 @default.
- W4311876054 hasConceptScore W4311876054C2779530757 @default.
- W4311876054 hasConceptScore W4311876054C41008148 @default.
- W4311876054 hasConceptScore W4311876054C50644808 @default.