Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311879944> ?p ?o ?g. }
- W4311879944 abstract "Abstract Manipulating the architecture of materials to achieve optimal combinations of properties (inverse design) has always been the dream of materials scientists and engineers. Lattices represent an efficient way to obtain lightweight yet strong materials, providing a high degree of tailorability. Despite massive research has been done on lattice architectures, the inverse design problem of complex phenomena (such as structural instability) has remained elusive. Via deep neural network and genetic algorithm, we provide a machine-learning-based approach to inverse-design non-uniformly assembled lattices. Combining basic building blocks, our approach allows us to independently control the geometry and topology of periodic and aperiodic structures. As an example, we inverse-design lattice architectures with superior buckling performance, outperforming traditional reinforced grid-like and bio-inspired lattices by ~30–90% and 10–30%, respectively. Our results provide insights into the buckling behavior of beam-based lattices, opening an avenue for possible applications in modern structures and infrastructures." @default.
- W4311879944 created "2023-01-02" @default.
- W4311879944 creator A5014967308 @default.
- W4311879944 creator A5042307268 @default.
- W4311879944 creator A5051898862 @default.
- W4311879944 date "2022-11-29" @default.
- W4311879944 modified "2023-10-14" @default.
- W4311879944 title "Inverse design of truss lattice materials with superior buckling resistance" @default.
- W4311879944 cites W1917020151 @default.
- W4311879944 cites W1969293769 @default.
- W4311879944 cites W1978153137 @default.
- W4311879944 cites W1988115241 @default.
- W4311879944 cites W1995778514 @default.
- W4311879944 cites W2015011771 @default.
- W4311879944 cites W2023587089 @default.
- W4311879944 cites W2032741311 @default.
- W4311879944 cites W2040124146 @default.
- W4311879944 cites W2053717624 @default.
- W4311879944 cites W2074616700 @default.
- W4311879944 cites W2077098498 @default.
- W4311879944 cites W2079930781 @default.
- W4311879944 cites W2085227243 @default.
- W4311879944 cites W2116045087 @default.
- W4311879944 cites W2122171697 @default.
- W4311879944 cites W2472467677 @default.
- W4311879944 cites W2766966300 @default.
- W4311879944 cites W2805220983 @default.
- W4311879944 cites W2883482411 @default.
- W4311879944 cites W2886881512 @default.
- W4311879944 cites W2890404692 @default.
- W4311879944 cites W2919115771 @default.
- W4311879944 cites W2923444658 @default.
- W4311879944 cites W2939893088 @default.
- W4311879944 cites W2963784900 @default.
- W4311879944 cites W2991294993 @default.
- W4311879944 cites W2997100726 @default.
- W4311879944 cites W3000404031 @default.
- W4311879944 cites W3012406820 @default.
- W4311879944 cites W3017663840 @default.
- W4311879944 cites W3018572435 @default.
- W4311879944 cites W3033937423 @default.
- W4311879944 cites W3048677983 @default.
- W4311879944 cites W3082366755 @default.
- W4311879944 cites W3083791730 @default.
- W4311879944 cites W3087522071 @default.
- W4311879944 cites W3093906041 @default.
- W4311879944 cites W3112263403 @default.
- W4311879944 cites W3113317199 @default.
- W4311879944 cites W3114941241 @default.
- W4311879944 cites W3129039627 @default.
- W4311879944 cites W3173789974 @default.
- W4311879944 cites W3174041022 @default.
- W4311879944 cites W3183290118 @default.
- W4311879944 cites W3198848420 @default.
- W4311879944 cites W3201642005 @default.
- W4311879944 cites W3204657988 @default.
- W4311879944 cites W3207792382 @default.
- W4311879944 cites W3208165932 @default.
- W4311879944 cites W4200267843 @default.
- W4311879944 cites W4205977216 @default.
- W4311879944 cites W4206321046 @default.
- W4311879944 cites W4210540254 @default.
- W4311879944 doi "https://doi.org/10.1038/s41524-022-00938-w" @default.
- W4311879944 hasPublicationYear "2022" @default.
- W4311879944 type Work @default.
- W4311879944 citedByCount "13" @default.
- W4311879944 countsByYear W43118799442022 @default.
- W4311879944 countsByYear W43118799442023 @default.
- W4311879944 crossrefType "journal-article" @default.
- W4311879944 hasAuthorship W4311879944A5014967308 @default.
- W4311879944 hasAuthorship W4311879944A5042307268 @default.
- W4311879944 hasAuthorship W4311879944A5051898862 @default.
- W4311879944 hasBestOaLocation W43118799441 @default.
- W4311879944 hasConcept C104247578 @default.
- W4311879944 hasConcept C114614502 @default.
- W4311879944 hasConcept C121332964 @default.
- W4311879944 hasConcept C127413603 @default.
- W4311879944 hasConcept C173534245 @default.
- W4311879944 hasConcept C184720557 @default.
- W4311879944 hasConcept C187691185 @default.
- W4311879944 hasConcept C207467116 @default.
- W4311879944 hasConcept C24890656 @default.
- W4311879944 hasConcept C2524010 @default.
- W4311879944 hasConcept C2781204021 @default.
- W4311879944 hasConcept C33923547 @default.
- W4311879944 hasConcept C41008148 @default.
- W4311879944 hasConcept C66938386 @default.
- W4311879944 hasConcept C85476182 @default.
- W4311879944 hasConceptScore W4311879944C104247578 @default.
- W4311879944 hasConceptScore W4311879944C114614502 @default.
- W4311879944 hasConceptScore W4311879944C121332964 @default.
- W4311879944 hasConceptScore W4311879944C127413603 @default.
- W4311879944 hasConceptScore W4311879944C173534245 @default.
- W4311879944 hasConceptScore W4311879944C184720557 @default.
- W4311879944 hasConceptScore W4311879944C187691185 @default.
- W4311879944 hasConceptScore W4311879944C207467116 @default.
- W4311879944 hasConceptScore W4311879944C24890656 @default.
- W4311879944 hasConceptScore W4311879944C2524010 @default.
- W4311879944 hasConceptScore W4311879944C2781204021 @default.
- W4311879944 hasConceptScore W4311879944C33923547 @default.