Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311885619> ?p ?o ?g. }
- W4311885619 endingPage "51" @default.
- W4311885619 startingPage "37" @default.
- W4311885619 abstract "X-ray luminescence is an optical phenomenon in which chemical compounds known as scintillators can emit short-wavelength light upon the excitation of X-ray photons. Since X-rays exhibit well-recognized advantages of deep penetration toward tissues and a minimal autofluorescence background in biological samples, X-ray luminescence has been increasingly becoming a promising optical tool for tackling the challenges in the fields of imaging, biosensing, and theragnostics. In recent years, the emergence of nanocrystal scintillators have further expanded the application scenarios of X-ray luminescence, such as high-resolution X-ray imaging, autofluorescence-free detection of biomarkers, and noninvasive phototherapy in deep tissues. Meanwhile, X-ray luminescence holds great promise in breaking the depth dependency of deep-seated lesion treatment and achieving synergistic radiotherapy with phototherapy.In this Account, we provide an overview of recent advances in developing advanced X-ray luminescence for applications in imaging, biosensing, theragnostics, and optogenetics neuromodulation. We first introduce solution-processed lead halide all-inorganic perovskite nanocrystal scintillators that are able to convert X-ray photons to multicolor X-ray luminescence. We have developed a perovskite nanoscintillator-based X-ray detector for high-resolution X-ray imaging of the internal structure of electronic circuits and biological samples. We further advanced the development of flexible X-ray luminescence imaging using solution-processable lanthanide-doped nanoscintillators featuring long-lived X-ray luminescence to image three-dimensional irregularly shaped objects. We also outline the general principles of high-contrast in vivo X-ray luminescence imaging which combines nanoscintillators with functional biomolecules such as aptamers, peptides, and antibodies. High-quality X-ray luminescence nanoprobes were engineered to achieve the high-sensitivity detection of various biomarkers, which enabled the avoidance of interference from the biological matrix autofluorescence and photon scattering. By marrying X-ray luminescence probes with stimuli-responsive materials, multifunctional theragnostic nanosystems were constructed for on-demand synergistic gas radiotherapy with excellent therapeutic effects. By taking advantage of the capability of X-rays to penetrate the skull, we also demonstrated the development of controllable, wireless optogenetic neuromodulation using X-ray luminescence probes while obviating damage from traditional optical fibers. Furthermore, we discussed in detail some challenges and future development of X-ray luminescence in terms of scintillator synthesis and surface modification, mechanism studies, and their other potential applications to provide useful guidance for further advancing the development of X-ray luminescence." @default.
- W4311885619 created "2023-01-02" @default.
- W4311885619 creator A5009271852 @default.
- W4311885619 creator A5017837300 @default.
- W4311885619 creator A5029957634 @default.
- W4311885619 creator A5034175275 @default.
- W4311885619 date "2022-12-19" @default.
- W4311885619 modified "2023-10-16" @default.
- W4311885619 title "Advancing X-ray Luminescence for Imaging, Biosensing, and Theragnostics" @default.
- W4311885619 cites W1971659905 @default.
- W4311885619 cites W1995673420 @default.
- W4311885619 cites W2050932531 @default.
- W4311885619 cites W2102073707 @default.
- W4311885619 cites W2132904123 @default.
- W4311885619 cites W2213275621 @default.
- W4311885619 cites W2226188670 @default.
- W4311885619 cites W2315060029 @default.
- W4311885619 cites W2325139724 @default.
- W4311885619 cites W2332462726 @default.
- W4311885619 cites W2417819324 @default.
- W4311885619 cites W2585543599 @default.
- W4311885619 cites W2744106462 @default.
- W4311885619 cites W2767707283 @default.
- W4311885619 cites W2770695101 @default.
- W4311885619 cites W2777070146 @default.
- W4311885619 cites W2781323039 @default.
- W4311885619 cites W2786186674 @default.
- W4311885619 cites W2792345771 @default.
- W4311885619 cites W2794625586 @default.
- W4311885619 cites W2801124226 @default.
- W4311885619 cites W2802060594 @default.
- W4311885619 cites W2804354477 @default.
- W4311885619 cites W2888052177 @default.
- W4311885619 cites W2888364028 @default.
- W4311885619 cites W2891598673 @default.
- W4311885619 cites W2898638931 @default.
- W4311885619 cites W2909899402 @default.
- W4311885619 cites W2913303535 @default.
- W4311885619 cites W2914720189 @default.
- W4311885619 cites W2920872635 @default.
- W4311885619 cites W2922390616 @default.
- W4311885619 cites W2946016507 @default.
- W4311885619 cites W2957118159 @default.
- W4311885619 cites W2966834597 @default.
- W4311885619 cites W2971901810 @default.
- W4311885619 cites W2972820658 @default.
- W4311885619 cites W2980490513 @default.
- W4311885619 cites W2996866278 @default.
- W4311885619 cites W3017824631 @default.
- W4311885619 cites W3026907474 @default.
- W4311885619 cites W3035917359 @default.
- W4311885619 cites W3049671498 @default.
- W4311885619 cites W3082277512 @default.
- W4311885619 cites W3083075219 @default.
- W4311885619 cites W3097332988 @default.
- W4311885619 cites W3119237456 @default.
- W4311885619 cites W3119509434 @default.
- W4311885619 cites W3126205838 @default.
- W4311885619 cites W3129299350 @default.
- W4311885619 cites W3132367506 @default.
- W4311885619 cites W3136881959 @default.
- W4311885619 cites W3137410076 @default.
- W4311885619 cites W3140531652 @default.
- W4311885619 cites W3156887630 @default.
- W4311885619 cites W3161327821 @default.
- W4311885619 cites W3172984574 @default.
- W4311885619 cites W3185825971 @default.
- W4311885619 cites W3198964663 @default.
- W4311885619 cites W3204213428 @default.
- W4311885619 cites W3209852218 @default.
- W4311885619 cites W3213364532 @default.
- W4311885619 cites W3213983814 @default.
- W4311885619 cites W4210753088 @default.
- W4311885619 cites W4214860510 @default.
- W4311885619 cites W4229332889 @default.
- W4311885619 cites W4245473324 @default.
- W4311885619 cites W4281606784 @default.
- W4311885619 cites W4284975002 @default.
- W4311885619 cites W4294122841 @default.
- W4311885619 doi "https://doi.org/10.1021/acs.accounts.2c00517" @default.
- W4311885619 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36533853" @default.
- W4311885619 hasPublicationYear "2022" @default.
- W4311885619 type Work @default.
- W4311885619 citedByCount "9" @default.
- W4311885619 countsByYear W43118856192023 @default.
- W4311885619 crossrefType "journal-article" @default.
- W4311885619 hasAuthorship W4311885619A5009271852 @default.
- W4311885619 hasAuthorship W4311885619A5017837300 @default.
- W4311885619 hasAuthorship W4311885619A5029957634 @default.
- W4311885619 hasAuthorship W4311885619A5034175275 @default.
- W4311885619 hasConcept C102073756 @default.
- W4311885619 hasConcept C120665830 @default.
- W4311885619 hasConcept C121332964 @default.
- W4311885619 hasConcept C145148216 @default.
- W4311885619 hasConcept C148869448 @default.
- W4311885619 hasConcept C161694136 @default.
- W4311885619 hasConcept C171250308 @default.
- W4311885619 hasConcept C175854130 @default.