Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311890420> ?p ?o ?g. }
Showing items 1 to 41 of
41
with 100 items per page.
- W4311890420 endingPage "385" @default.
- W4311890420 startingPage "372" @default.
- W4311890420 abstract "The Ubiquitous Wireless Intelligence concept of 6G opens up a variety of technological innovation paths, some of which are aided by machine learning and artificial intelligence, the two topics on which this work focuses. However, this advancement in ICT comes at a time when people are more driven than ever to use digital inclusion to reduce social and economic inequality while also giving the UN Sustainable Development Goals priority (SDGs). The document is divided into four sections: what 6G offers, the gaps and technical hurdles now present, the role of machine learning in many aspects, and finally the difficulties associated with incorporating AI/ML For the first time, a brand-new theoretical framework, denoted as 6GIIoE, was developed for the 6G-enabled IIoE system. This paper presents the vision of future 6G wireless correspondence and its network design. We talk about the emerging advances such as artificial intelligence, terahertz correspondences, optical wireless innovation, free space optic organization, blockchain, three dimensional networking, quantum correspondences, automated ethereal vehicle, without cell correspondences, integration of wireless information and energy move, integration of sensing and correspondence, integration of access-backhaul networks, dynamic organization slicing, holographic beamforming, and enormous information examination that can help the 6G design improvement in guaranteeing the QoS. We present the normal applications with the prerequisites and the potential innovations for 6Gcorrespondence. We likewise outline the potential difficulties and research headings to arrive at this objective." @default.
- W4311890420 created "2023-01-02" @default.
- W4311890420 creator A5044088447 @default.
- W4311890420 date "2022-11-09" @default.
- W4311890420 modified "2023-10-18" @default.
- W4311890420 title "Machine Learning Based Industrial Engineering With 6G Technology" @default.
- W4311890420 doi "https://doi.org/10.47750/pnr.2022.13.s09.46" @default.
- W4311890420 hasPublicationYear "2022" @default.
- W4311890420 type Work @default.
- W4311890420 citedByCount "0" @default.
- W4311890420 crossrefType "journal-article" @default.
- W4311890420 hasAuthorship W4311890420A5044088447 @default.
- W4311890420 hasBestOaLocation W43118904201 @default.
- W4311890420 hasConcept C108037233 @default.
- W4311890420 hasConcept C154945302 @default.
- W4311890420 hasConcept C41008148 @default.
- W4311890420 hasConcept C555944384 @default.
- W4311890420 hasConcept C76155785 @default.
- W4311890420 hasConceptScore W4311890420C108037233 @default.
- W4311890420 hasConceptScore W4311890420C154945302 @default.
- W4311890420 hasConceptScore W4311890420C41008148 @default.
- W4311890420 hasConceptScore W4311890420C555944384 @default.
- W4311890420 hasConceptScore W4311890420C76155785 @default.
- W4311890420 hasLocation W43118904201 @default.
- W4311890420 hasOpenAccess W4311890420 @default.
- W4311890420 hasPrimaryLocation W43118904201 @default.
- W4311890420 hasRelatedWork W1859204208 @default.
- W4311890420 hasRelatedWork W1968438487 @default.
- W4311890420 hasRelatedWork W1980509383 @default.
- W4311890420 hasRelatedWork W2398544813 @default.
- W4311890420 hasRelatedWork W2536344710 @default.
- W4311890420 hasRelatedWork W3032384272 @default.
- W4311890420 hasRelatedWork W4318423191 @default.
- W4311890420 hasRelatedWork W2185112991 @default.
- W4311890420 hasRelatedWork W2477570907 @default.
- W4311890420 hasRelatedWork W2560200228 @default.
- W4311890420 isParatext "false" @default.
- W4311890420 isRetracted "false" @default.
- W4311890420 workType "article" @default.