Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311906403> ?p ?o ?g. }
- W4311906403 endingPage "113" @default.
- W4311906403 startingPage "96" @default.
- W4311906403 abstract "Energy transition has brought widespread attentions to the concept of coupled utilization of the geothermal and solar energy. This paper provides an integrated assessment on developing a nanofluid geothermal-photovoltaic hybrid system that addresses the multi-objective optimization and multi-criteria evaluation difficulties. The coupling system design and dispatch are optimized by considering the multiple objectives from the microscopic particles to the system. The life cycle cost, levelized cost of energy, levelized cost of heat, and the irreversibility are introduced in the optimization stage. The optimization parameters include the pipe arrangement, type of nanoparticles, and the concentration of the nanoparticles in nanofluids. A combined analysis including the energy, exergy, economy, and the environment is proposed to evaluate the various objectives and cases. The results show that the combination of 2% Al2O3 nanofluid and spiral pipe has the optimum performance. The monocrystalline solar panels with the nanofluids-aided heat pump create the least CO2 emissions (550 kg/year), the least LCOE (198.18 $), and the highest exergy efficiency. However, the LCOH (211.78 $/MWh) is still much high. Only when the electricity cost is higher than 0.11$/kWh, the proposed coupling system would show competitiveness. In summary, these results effectively prove the robustness and superiority of the hybrid system." @default.
- W4311906403 created "2023-01-02" @default.
- W4311906403 creator A5019738655 @default.
- W4311906403 creator A5029457175 @default.
- W4311906403 creator A5055136738 @default.
- W4311906403 creator A5073534575 @default.
- W4311906403 creator A5081489339 @default.
- W4311906403 date "2023-12-01" @default.
- W4311906403 modified "2023-10-14" @default.
- W4311906403 title "Multi-objective optimizations and multi-criteria assessments for a nanofluid-aided geothermal PV hybrid system" @default.
- W4311906403 cites W1899127742 @default.
- W4311906403 cites W1928977697 @default.
- W4311906403 cites W1947144316 @default.
- W4311906403 cites W1995152350 @default.
- W4311906403 cites W2004003391 @default.
- W4311906403 cites W2004906888 @default.
- W4311906403 cites W2013503353 @default.
- W4311906403 cites W2016213857 @default.
- W4311906403 cites W2038613560 @default.
- W4311906403 cites W2046928187 @default.
- W4311906403 cites W2047972956 @default.
- W4311906403 cites W2091831576 @default.
- W4311906403 cites W2128238029 @default.
- W4311906403 cites W2146246970 @default.
- W4311906403 cites W2204773849 @default.
- W4311906403 cites W2345363099 @default.
- W4311906403 cites W2386418676 @default.
- W4311906403 cites W245181115 @default.
- W4311906403 cites W2514459358 @default.
- W4311906403 cites W2566702680 @default.
- W4311906403 cites W2580091476 @default.
- W4311906403 cites W2617667070 @default.
- W4311906403 cites W2738706304 @default.
- W4311906403 cites W2752056423 @default.
- W4311906403 cites W2755796858 @default.
- W4311906403 cites W2769948015 @default.
- W4311906403 cites W2789478001 @default.
- W4311906403 cites W2801908479 @default.
- W4311906403 cites W2802459270 @default.
- W4311906403 cites W2843070407 @default.
- W4311906403 cites W2893403024 @default.
- W4311906403 cites W2906516270 @default.
- W4311906403 cites W2917008286 @default.
- W4311906403 cites W2922866867 @default.
- W4311906403 cites W2937017037 @default.
- W4311906403 cites W2942230547 @default.
- W4311906403 cites W2947511897 @default.
- W4311906403 cites W2953813772 @default.
- W4311906403 cites W2966663800 @default.
- W4311906403 cites W2974598079 @default.
- W4311906403 cites W2982178121 @default.
- W4311906403 cites W2990603174 @default.
- W4311906403 cites W2990758916 @default.
- W4311906403 cites W3001333674 @default.
- W4311906403 cites W3014974411 @default.
- W4311906403 cites W3021643824 @default.
- W4311906403 cites W3022567978 @default.
- W4311906403 cites W3025169611 @default.
- W4311906403 cites W3039276422 @default.
- W4311906403 cites W3041827216 @default.
- W4311906403 cites W3049309424 @default.
- W4311906403 cites W3086553085 @default.
- W4311906403 cites W3089247234 @default.
- W4311906403 cites W3091602275 @default.
- W4311906403 cites W3094234186 @default.
- W4311906403 cites W3116766107 @default.
- W4311906403 cites W3158831184 @default.
- W4311906403 cites W3159723612 @default.
- W4311906403 cites W3160288133 @default.
- W4311906403 cites W3170394080 @default.
- W4311906403 cites W3216874428 @default.
- W4311906403 cites W4207069528 @default.
- W4311906403 cites W4225145967 @default.
- W4311906403 cites W4289515759 @default.
- W4311906403 doi "https://doi.org/10.1016/j.egyr.2022.11.170" @default.
- W4311906403 hasPublicationYear "2023" @default.
- W4311906403 type Work @default.
- W4311906403 citedByCount "21" @default.
- W4311906403 countsByYear W43119064032023 @default.
- W4311906403 crossrefType "journal-article" @default.
- W4311906403 hasAuthorship W4311906403A5019738655 @default.
- W4311906403 hasAuthorship W4311906403A5029457175 @default.
- W4311906403 hasAuthorship W4311906403A5055136738 @default.
- W4311906403 hasAuthorship W4311906403A5073534575 @default.
- W4311906403 hasAuthorship W4311906403A5081489339 @default.
- W4311906403 hasBestOaLocation W43119064031 @default.
- W4311906403 hasConcept C111766609 @default.
- W4311906403 hasConcept C113146524 @default.
- W4311906403 hasConcept C119599485 @default.
- W4311906403 hasConcept C121332964 @default.
- W4311906403 hasConcept C127313418 @default.
- W4311906403 hasConcept C127413603 @default.
- W4311906403 hasConcept C155672457 @default.
- W4311906403 hasConcept C163258240 @default.
- W4311906403 hasConcept C171250308 @default.
- W4311906403 hasConcept C192562407 @default.
- W4311906403 hasConcept C21880701 @default.
- W4311906403 hasConcept C21946209 @default.