Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311911704> ?p ?o ?g. }
- W4311911704 endingPage "e1010772" @default.
- W4311911704 startingPage "e1010772" @default.
- W4311911704 abstract "Single cell RNA sequencing (scRNA-seq) enables researchers to characterize transcriptomic profiles at the single-cell resolution with increasingly high throughput. Clustering is a crucial step in single cell analysis. Clustering analysis of transcriptome profiled by scRNA-seq can reveal the heterogeneity and diversity of cells. However, single cell study still remains great challenges due to its high noise and dimension. Subspace clustering aims at discovering the intrinsic structure of data in unsupervised fashion. In this paper, we propose a deep sparse subspace clustering method scDSSC combining noise reduction and dimensionality reduction for scRNA-seq data, which simultaneously learns feature representation and clustering via explicit modelling of scRNA-seq data generation. Experiments on a variety of scRNA-seq datasets from thousands to tens of thousands of cells have shown that scDSSC can significantly improve clustering performance and facilitate the interpretability of clustering and downstream analysis. Compared to some popular scRNA-deq analysis methods, scDSSC outperformed state-of-the-art methods under various clustering performance metrics." @default.
- W4311911704 created "2023-01-02" @default.
- W4311911704 creator A5064185915 @default.
- W4311911704 creator A5071754273 @default.
- W4311911704 creator A5072769145 @default.
- W4311911704 creator A5078955823 @default.
- W4311911704 date "2022-12-19" @default.
- W4311911704 modified "2023-09-25" @default.
- W4311911704 title "scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data" @default.
- W4311911704 cites W1979283544 @default.
- W4311911704 cites W2018050443 @default.
- W4311911704 cites W2069089843 @default.
- W4311911704 cites W2089468765 @default.
- W4311911704 cites W2102212449 @default.
- W4311911704 cites W2132914434 @default.
- W4311911704 cites W2135937351 @default.
- W4311911704 cites W2306630387 @default.
- W4311911704 cites W2523620612 @default.
- W4311911704 cites W2562003322 @default.
- W4311911704 cites W2598326928 @default.
- W4311911704 cites W2740924709 @default.
- W4311911704 cites W2800392236 @default.
- W4311911704 cites W2887326710 @default.
- W4311911704 cites W2901677030 @default.
- W4311911704 cites W2937917790 @default.
- W4311911704 cites W2949067670 @default.
- W4311911704 cites W2950129791 @default.
- W4311911704 cites W2951381561 @default.
- W4311911704 cites W2951506174 @default.
- W4311911704 cites W2953251392 @default.
- W4311911704 cites W2992062578 @default.
- W4311911704 cites W3007823815 @default.
- W4311911704 cites W3008739840 @default.
- W4311911704 cites W3009302866 @default.
- W4311911704 cites W3039121139 @default.
- W4311911704 cites W3089021621 @default.
- W4311911704 cites W3111450319 @default.
- W4311911704 cites W3123129655 @default.
- W4311911704 cites W3134128419 @default.
- W4311911704 cites W3137285774 @default.
- W4311911704 cites W3162079832 @default.
- W4311911704 cites W3196630240 @default.
- W4311911704 cites W3202332579 @default.
- W4311911704 cites W3212776961 @default.
- W4311911704 cites W4282835974 @default.
- W4311911704 cites W4283171432 @default.
- W4311911704 cites W4300672471 @default.
- W4311911704 doi "https://doi.org/10.1371/journal.pcbi.1010772" @default.
- W4311911704 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36534702" @default.
- W4311911704 hasPublicationYear "2022" @default.
- W4311911704 type Work @default.
- W4311911704 citedByCount "1" @default.
- W4311911704 countsByYear W43119117042023 @default.
- W4311911704 crossrefType "journal-article" @default.
- W4311911704 hasAuthorship W4311911704A5064185915 @default.
- W4311911704 hasAuthorship W4311911704A5071754273 @default.
- W4311911704 hasAuthorship W4311911704A5072769145 @default.
- W4311911704 hasAuthorship W4311911704A5078955823 @default.
- W4311911704 hasBestOaLocation W43119117041 @default.
- W4311911704 hasConcept C111442797 @default.
- W4311911704 hasConcept C124101348 @default.
- W4311911704 hasConcept C138885662 @default.
- W4311911704 hasConcept C144817290 @default.
- W4311911704 hasConcept C153180895 @default.
- W4311911704 hasConcept C154945302 @default.
- W4311911704 hasConcept C184509293 @default.
- W4311911704 hasConcept C186767784 @default.
- W4311911704 hasConcept C2776401178 @default.
- W4311911704 hasConcept C2781067378 @default.
- W4311911704 hasConcept C32834561 @default.
- W4311911704 hasConcept C33704608 @default.
- W4311911704 hasConcept C41008148 @default.
- W4311911704 hasConcept C41895202 @default.
- W4311911704 hasConcept C70518039 @default.
- W4311911704 hasConcept C73555534 @default.
- W4311911704 hasConcept C94641424 @default.
- W4311911704 hasConceptScore W4311911704C111442797 @default.
- W4311911704 hasConceptScore W4311911704C124101348 @default.
- W4311911704 hasConceptScore W4311911704C138885662 @default.
- W4311911704 hasConceptScore W4311911704C144817290 @default.
- W4311911704 hasConceptScore W4311911704C153180895 @default.
- W4311911704 hasConceptScore W4311911704C154945302 @default.
- W4311911704 hasConceptScore W4311911704C184509293 @default.
- W4311911704 hasConceptScore W4311911704C186767784 @default.
- W4311911704 hasConceptScore W4311911704C2776401178 @default.
- W4311911704 hasConceptScore W4311911704C2781067378 @default.
- W4311911704 hasConceptScore W4311911704C32834561 @default.
- W4311911704 hasConceptScore W4311911704C33704608 @default.
- W4311911704 hasConceptScore W4311911704C41008148 @default.
- W4311911704 hasConceptScore W4311911704C41895202 @default.
- W4311911704 hasConceptScore W4311911704C70518039 @default.
- W4311911704 hasConceptScore W4311911704C73555534 @default.
- W4311911704 hasConceptScore W4311911704C94641424 @default.
- W4311911704 hasFunder F4320321001 @default.
- W4311911704 hasIssue "12" @default.
- W4311911704 hasLocation W43119117041 @default.
- W4311911704 hasLocation W43119117042 @default.
- W4311911704 hasLocation W43119117043 @default.