Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311948638> ?p ?o ?g. }
- W4311948638 abstract "The liver is the most common site of distant metastasis in rectal cancer, and liver metastasis dramatically affects the treatment strategy of patients. This study aimed to develop and validate a clinical prediction model based on machine learning algorithms to predict the risk of liver metastasis in patients with rectal cancer.We integrated two rectal cancer cohorts from Surveillance, Epidemiology, and End Results (SEER) and Chinese multicenter hospitals from 2010-2017. We also built and validated liver metastasis prediction models for rectal cancer using six machine learning algorithms, including random forest (RF), light gradient boosting (LGBM), extreme gradient boosting (XGB), multilayer perceptron (MLP), logistic regression (LR), and K-nearest neighbor (KNN). The models were evaluated by combining several metrics, such as the area under the curve (AUC), accuracy score, sensitivity, specificity and F1 score. Finally, we created a network calculator using the best model.The study cohort consisted of 19,958 patients from the SEER database and 924 patients from two hospitals in China. The AUC values of the six prediction models ranged from 0.70 to 0.95. The XGB model showed the best predictive power, with the following metrics assessed in the internal test set: AUC (0.918), accuracy (0.884), sensitivity (0.721), and specificity (0.787). The XGB model was assessed in the outer test set with the following metrics: AUC (0.926), accuracy (0.919), sensitivity (0.740), and specificity (0.765). The XGB algorithm also shows a good fit on the calibration decision curves for both the internal test set and the external validation set. Finally, we constructed an online web calculator using the XGB model to help generalize the model and to assist physicians in their decision-making better.We successfully developed an XGB-based machine learning model to predict liver metastasis from rectal cancer, which was also validated with a real-world dataset. Finally, we developed a web-based predictor to guide clinical diagnosis and treatment strategies better." @default.
- W4311948638 created "2023-01-03" @default.
- W4311948638 creator A5051825614 @default.
- W4311948638 creator A5063131315 @default.
- W4311948638 creator A5080447857 @default.
- W4311948638 creator A5089992922 @default.
- W4311948638 date "2022-12-20" @default.
- W4311948638 modified "2023-09-30" @default.
- W4311948638 title "Application of machine learning techniques in real-world research to predict the risk of liver metastasis in rectal cancer" @default.
- W4311948638 cites W1678356000 @default.
- W4311948638 cites W1975460878 @default.
- W4311948638 cites W1989980011 @default.
- W4311948638 cites W2000569303 @default.
- W4311948638 cites W2003554833 @default.
- W4311948638 cites W2057583190 @default.
- W4311948638 cites W2065974896 @default.
- W4311948638 cites W2084470612 @default.
- W4311948638 cites W2155994495 @default.
- W4311948638 cites W2162746289 @default.
- W4311948638 cites W2177870565 @default.
- W4311948638 cites W2233462515 @default.
- W4311948638 cites W2243379852 @default.
- W4311948638 cites W2319322364 @default.
- W4311948638 cites W2340932003 @default.
- W4311948638 cites W2594546096 @default.
- W4311948638 cites W2615514106 @default.
- W4311948638 cites W2752594398 @default.
- W4311948638 cites W2802584856 @default.
- W4311948638 cites W2891797582 @default.
- W4311948638 cites W2911964244 @default.
- W4311948638 cites W2935177247 @default.
- W4311948638 cites W2940010972 @default.
- W4311948638 cites W2979787264 @default.
- W4311948638 cites W2983816439 @default.
- W4311948638 cites W2995098893 @default.
- W4311948638 cites W3013251118 @default.
- W4311948638 cites W3016919931 @default.
- W4311948638 cites W3039955899 @default.
- W4311948638 cites W3043698154 @default.
- W4311948638 cites W3049221994 @default.
- W4311948638 cites W3088272032 @default.
- W4311948638 cites W3104830070 @default.
- W4311948638 cites W3109460784 @default.
- W4311948638 cites W3120071812 @default.
- W4311948638 cites W3128646645 @default.
- W4311948638 cites W3128742465 @default.
- W4311948638 cites W3143245897 @default.
- W4311948638 cites W3149019244 @default.
- W4311948638 cites W3177221842 @default.
- W4311948638 cites W3200411696 @default.
- W4311948638 cites W3201909053 @default.
- W4311948638 cites W4200300652 @default.
- W4311948638 cites W4206538733 @default.
- W4311948638 cites W4225254367 @default.
- W4311948638 cites W4230861824 @default.
- W4311948638 cites W4283520084 @default.
- W4311948638 cites W4285010829 @default.
- W4311948638 cites W4295008509 @default.
- W4311948638 doi "https://doi.org/10.3389/fonc.2022.1065468" @default.
- W4311948638 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36605425" @default.
- W4311948638 hasPublicationYear "2022" @default.
- W4311948638 type Work @default.
- W4311948638 citedByCount "1" @default.
- W4311948638 countsByYear W43119486382023 @default.
- W4311948638 crossrefType "journal-article" @default.
- W4311948638 hasAuthorship W4311948638A5051825614 @default.
- W4311948638 hasAuthorship W4311948638A5063131315 @default.
- W4311948638 hasAuthorship W4311948638A5080447857 @default.
- W4311948638 hasAuthorship W4311948638A5089992922 @default.
- W4311948638 hasBestOaLocation W43119486381 @default.
- W4311948638 hasConcept C119857082 @default.
- W4311948638 hasConcept C121608353 @default.
- W4311948638 hasConcept C126322002 @default.
- W4311948638 hasConcept C143998085 @default.
- W4311948638 hasConcept C151956035 @default.
- W4311948638 hasConcept C154945302 @default.
- W4311948638 hasConcept C169258074 @default.
- W4311948638 hasConcept C169903167 @default.
- W4311948638 hasConcept C179717631 @default.
- W4311948638 hasConcept C2779013556 @default.
- W4311948638 hasConcept C41008148 @default.
- W4311948638 hasConcept C46686674 @default.
- W4311948638 hasConcept C50644808 @default.
- W4311948638 hasConcept C526805850 @default.
- W4311948638 hasConcept C70153297 @default.
- W4311948638 hasConcept C71924100 @default.
- W4311948638 hasConceptScore W4311948638C119857082 @default.
- W4311948638 hasConceptScore W4311948638C121608353 @default.
- W4311948638 hasConceptScore W4311948638C126322002 @default.
- W4311948638 hasConceptScore W4311948638C143998085 @default.
- W4311948638 hasConceptScore W4311948638C151956035 @default.
- W4311948638 hasConceptScore W4311948638C154945302 @default.
- W4311948638 hasConceptScore W4311948638C169258074 @default.
- W4311948638 hasConceptScore W4311948638C169903167 @default.
- W4311948638 hasConceptScore W4311948638C179717631 @default.
- W4311948638 hasConceptScore W4311948638C2779013556 @default.
- W4311948638 hasConceptScore W4311948638C41008148 @default.
- W4311948638 hasConceptScore W4311948638C46686674 @default.
- W4311948638 hasConceptScore W4311948638C50644808 @default.
- W4311948638 hasConceptScore W4311948638C526805850 @default.