Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311948717> ?p ?o ?g. }
- W4311948717 abstract "Biomass burning is a major phenomenon that plays an important role in small-scale ecological processes such as vegetation dynamics and soil erosion, and global processes such as hydrological cycles and climate change. However, global fire databases have low accuracies for burned area detection in areas with small fires, low biomass and in woodlands and open forests that characterize Central India. The present study uses higher resolution (30 meter) Landsat imagery to test accuracies for burned area detection using spectral indices (SI), machine learning (ML) algorithms and supervised classification. We find that detection of burned area by global fire product Fire Information for Resource Management System (FIRMS) is very low (<20%). Accuracies are higher for Landsat-based classification of burned area using supervised classification, random forest (RF) and Support Vector Machines (SVM). Accuracies are higher in April–May than in February–March and vary by azimuth angle on the day of image acquisition. RF produced the most consistently high classification accuracies for April (>80%), but had a tendency to misclassify less frequently available land covers; SVM had similar classification accuracies but had a tendency to overfit the model. Both lead to the potential for increasing commission errors and need to be used carefully when predicting burned area. Inclusion of SI had high relative importance in predicting burned area and reduced commission errors. Given these caveats, we recommend using ML algorithms for mapping burned area in the future, as it requires less time investment than classification and can yield consistent results. Accurate mapping of high-resolution fires is important for more accurate inputs into carbon inventories and ecological understanding of land-use dynamics and drivers." @default.
- W4311948717 created "2023-01-03" @default.
- W4311948717 creator A5019366125 @default.
- W4311948717 creator A5035715959 @default.
- W4311948717 creator A5037471066 @default.
- W4311948717 creator A5044400225 @default.
- W4311948717 creator A5057857313 @default.
- W4311948717 date "2022-12-20" @default.
- W4311948717 modified "2023-10-13" @default.
- W4311948717 title "Evaluating methods to map burned area at 30-meter resolution in forests and agricultural areas of Central India" @default.
- W4311948717 cites W1838651935 @default.
- W4311948717 cites W1966881693 @default.
- W4311948717 cites W1990653740 @default.
- W4311948717 cites W1992758377 @default.
- W4311948717 cites W1994043372 @default.
- W4311948717 cites W2009569057 @default.
- W4311948717 cites W2034516548 @default.
- W4311948717 cites W2045549004 @default.
- W4311948717 cites W2055242945 @default.
- W4311948717 cites W2059455952 @default.
- W4311948717 cites W2065253738 @default.
- W4311948717 cites W2065703946 @default.
- W4311948717 cites W2075704050 @default.
- W4311948717 cites W2084132923 @default.
- W4311948717 cites W2085145486 @default.
- W4311948717 cites W2095418348 @default.
- W4311948717 cites W2109947221 @default.
- W4311948717 cites W2132254275 @default.
- W4311948717 cites W2134814598 @default.
- W4311948717 cites W2143214074 @default.
- W4311948717 cites W2152523941 @default.
- W4311948717 cites W2163376500 @default.
- W4311948717 cites W2171187785 @default.
- W4311948717 cites W2171210136 @default.
- W4311948717 cites W2261059368 @default.
- W4311948717 cites W2295931476 @default.
- W4311948717 cites W2794987129 @default.
- W4311948717 cites W2805639349 @default.
- W4311948717 cites W2805686157 @default.
- W4311948717 cites W2807984376 @default.
- W4311948717 cites W2884056893 @default.
- W4311948717 cites W2886575119 @default.
- W4311948717 cites W2900635874 @default.
- W4311948717 cites W2905880828 @default.
- W4311948717 cites W2911304659 @default.
- W4311948717 cites W2977487538 @default.
- W4311948717 cites W2986604116 @default.
- W4311948717 cites W3085518950 @default.
- W4311948717 cites W3091869979 @default.
- W4311948717 cites W3094623573 @default.
- W4311948717 cites W3099079911 @default.
- W4311948717 cites W3132860221 @default.
- W4311948717 cites W3133639591 @default.
- W4311948717 cites W3134928257 @default.
- W4311948717 cites W3162299511 @default.
- W4311948717 cites W4281691183 @default.
- W4311948717 doi "https://doi.org/10.3389/ffgc.2022.933807" @default.
- W4311948717 hasPublicationYear "2022" @default.
- W4311948717 type Work @default.
- W4311948717 citedByCount "0" @default.
- W4311948717 crossrefType "journal-article" @default.
- W4311948717 hasAuthorship W4311948717A5019366125 @default.
- W4311948717 hasAuthorship W4311948717A5035715959 @default.
- W4311948717 hasAuthorship W4311948717A5037471066 @default.
- W4311948717 hasAuthorship W4311948717A5044400225 @default.
- W4311948717 hasAuthorship W4311948717A5057857313 @default.
- W4311948717 hasBestOaLocation W43119487171 @default.
- W4311948717 hasConcept C115540264 @default.
- W4311948717 hasConcept C119857082 @default.
- W4311948717 hasConcept C12267149 @default.
- W4311948717 hasConcept C142724271 @default.
- W4311948717 hasConcept C169258074 @default.
- W4311948717 hasConcept C18903297 @default.
- W4311948717 hasConcept C205649164 @default.
- W4311948717 hasConcept C2776133958 @default.
- W4311948717 hasConcept C39432304 @default.
- W4311948717 hasConcept C41008148 @default.
- W4311948717 hasConcept C62649853 @default.
- W4311948717 hasConcept C71924100 @default.
- W4311948717 hasConcept C86803240 @default.
- W4311948717 hasConceptScore W4311948717C115540264 @default.
- W4311948717 hasConceptScore W4311948717C119857082 @default.
- W4311948717 hasConceptScore W4311948717C12267149 @default.
- W4311948717 hasConceptScore W4311948717C142724271 @default.
- W4311948717 hasConceptScore W4311948717C169258074 @default.
- W4311948717 hasConceptScore W4311948717C18903297 @default.
- W4311948717 hasConceptScore W4311948717C205649164 @default.
- W4311948717 hasConceptScore W4311948717C2776133958 @default.
- W4311948717 hasConceptScore W4311948717C39432304 @default.
- W4311948717 hasConceptScore W4311948717C41008148 @default.
- W4311948717 hasConceptScore W4311948717C62649853 @default.
- W4311948717 hasConceptScore W4311948717C71924100 @default.
- W4311948717 hasConceptScore W4311948717C86803240 @default.
- W4311948717 hasLocation W43119487171 @default.
- W4311948717 hasLocation W43119487172 @default.
- W4311948717 hasOpenAccess W4311948717 @default.
- W4311948717 hasPrimaryLocation W43119487171 @default.
- W4311948717 hasRelatedWork W1987226891 @default.
- W4311948717 hasRelatedWork W2004826645 @default.
- W4311948717 hasRelatedWork W2376833071 @default.