Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311968051> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4311968051 endingPage "123769" @default.
- W4311968051 startingPage "123769" @default.
- W4311968051 abstract "This article reports the optimization of pin fin shape using a genetic algorithm (GA) coupled either to a machine learning (ML) model or a computational fluid dynamics (CFD) model. The ML model evaluates the temperature and pressure induced by the fins within a second and allows us to replace the time-consuming CFD simulations during the design stage. The optimization is conducted for a cooling channel with a uniform heat flux boundary condition (5 W/cm2) in the Reynolds numbers range of 3000 – 12000. The optimization identifies a funnel-shaped fin that enhances the heat transfer coefficient by 20% without an apparent increase of pressure drop as compared to the standard cylindrical pin fins. The funnel-shaped fin outperforms other conventional fins of elliptical, cubic, and drop shapes that induce a similar level of pressure drops. This work demonstrates the potential of ML-based optimization in searching unexplored shapes of heat transfer systems with superior performance." @default.
- W4311968051 created "2023-01-03" @default.
- W4311968051 creator A5003164074 @default.
- W4311968051 creator A5011417761 @default.
- W4311968051 creator A5070161044 @default.
- W4311968051 creator A5078080822 @default.
- W4311968051 date "2023-03-01" @default.
- W4311968051 modified "2023-10-11" @default.
- W4311968051 title "Shape optimization of pin fin array in a cooling channel using genetic algorithm and machine learning" @default.
- W4311968051 cites W1983517595 @default.
- W4311968051 cites W1984712857 @default.
- W4311968051 cites W1991382759 @default.
- W4311968051 cites W2015860509 @default.
- W4311968051 cites W2027454935 @default.
- W4311968051 cites W2035493769 @default.
- W4311968051 cites W2044307790 @default.
- W4311968051 cites W2047420573 @default.
- W4311968051 cites W2074976029 @default.
- W4311968051 cites W2089745930 @default.
- W4311968051 cites W2152250879 @default.
- W4311968051 cites W2483031229 @default.
- W4311968051 cites W2585996624 @default.
- W4311968051 cites W2758567842 @default.
- W4311968051 cites W2764248883 @default.
- W4311968051 cites W2928203935 @default.
- W4311968051 cites W2970602317 @default.
- W4311968051 cites W3037409910 @default.
- W4311968051 cites W3048252283 @default.
- W4311968051 cites W3093695208 @default.
- W4311968051 cites W3115728020 @default.
- W4311968051 cites W3130125686 @default.
- W4311968051 cites W3135457600 @default.
- W4311968051 cites W3197080633 @default.
- W4311968051 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2022.123769" @default.
- W4311968051 hasPublicationYear "2023" @default.
- W4311968051 type Work @default.
- W4311968051 citedByCount "4" @default.
- W4311968051 countsByYear W43119680512023 @default.
- W4311968051 crossrefType "journal-article" @default.
- W4311968051 hasAuthorship W4311968051A5003164074 @default.
- W4311968051 hasAuthorship W4311968051A5011417761 @default.
- W4311968051 hasAuthorship W4311968051A5070161044 @default.
- W4311968051 hasAuthorship W4311968051A5078080822 @default.
- W4311968051 hasConcept C114088122 @default.
- W4311968051 hasConcept C121332964 @default.
- W4311968051 hasConcept C127413603 @default.
- W4311968051 hasConcept C135628077 @default.
- W4311968051 hasConcept C159985019 @default.
- W4311968051 hasConcept C1633027 @default.
- W4311968051 hasConcept C17435862 @default.
- W4311968051 hasConcept C182748727 @default.
- W4311968051 hasConcept C192562407 @default.
- W4311968051 hasConcept C196558001 @default.
- W4311968051 hasConcept C29513896 @default.
- W4311968051 hasConcept C29700514 @default.
- W4311968051 hasConcept C41008148 @default.
- W4311968051 hasConcept C50517652 @default.
- W4311968051 hasConcept C57879066 @default.
- W4311968051 hasConcept C78519656 @default.
- W4311968051 hasConcept C91721477 @default.
- W4311968051 hasConcept C97355855 @default.
- W4311968051 hasConceptScore W4311968051C114088122 @default.
- W4311968051 hasConceptScore W4311968051C121332964 @default.
- W4311968051 hasConceptScore W4311968051C127413603 @default.
- W4311968051 hasConceptScore W4311968051C135628077 @default.
- W4311968051 hasConceptScore W4311968051C159985019 @default.
- W4311968051 hasConceptScore W4311968051C1633027 @default.
- W4311968051 hasConceptScore W4311968051C17435862 @default.
- W4311968051 hasConceptScore W4311968051C182748727 @default.
- W4311968051 hasConceptScore W4311968051C192562407 @default.
- W4311968051 hasConceptScore W4311968051C196558001 @default.
- W4311968051 hasConceptScore W4311968051C29513896 @default.
- W4311968051 hasConceptScore W4311968051C29700514 @default.
- W4311968051 hasConceptScore W4311968051C41008148 @default.
- W4311968051 hasConceptScore W4311968051C50517652 @default.
- W4311968051 hasConceptScore W4311968051C57879066 @default.
- W4311968051 hasConceptScore W4311968051C78519656 @default.
- W4311968051 hasConceptScore W4311968051C91721477 @default.
- W4311968051 hasConceptScore W4311968051C97355855 @default.
- W4311968051 hasLocation W43119680511 @default.
- W4311968051 hasOpenAccess W4311968051 @default.
- W4311968051 hasPrimaryLocation W43119680511 @default.
- W4311968051 hasRelatedWork W1977583997 @default.
- W4311968051 hasRelatedWork W2073875810 @default.
- W4311968051 hasRelatedWork W2081113335 @default.
- W4311968051 hasRelatedWork W2081453499 @default.
- W4311968051 hasRelatedWork W2356551568 @default.
- W4311968051 hasRelatedWork W2358635018 @default.
- W4311968051 hasRelatedWork W2364686644 @default.
- W4311968051 hasRelatedWork W2368101485 @default.
- W4311968051 hasRelatedWork W2889922688 @default.
- W4311968051 hasRelatedWork W2496409068 @default.
- W4311968051 hasVolume "202" @default.
- W4311968051 isParatext "false" @default.
- W4311968051 isRetracted "false" @default.
- W4311968051 workType "article" @default.