Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311979613> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4311979613 abstract "Minimum spanning tree (MST) has been devised for non-local cost aggregation to solve the stereo matching problem. However, the cost aggregation is employed directly from leaf toward root node, then in an inverse pass without considering any decision rules. And a small amount of noise is also existed in stereo image pairs. Both of the limitations often lead to failure in achieving more competitive results. This paper presents a novel stereo matching algorithm using forward-backward diffusion and pruning-based cost aggregation. In “forward-backward” process, the raw image pairs are smoothened on a horizontal tree structure as well as retaining image edges sharp. During cost aggregation, the MST where a complete graph involves the whole image pixels is cut off self-adaptively when the depth edge information is referred to. Each node in this tree receives supports from all other nodes which belong to similar depth regions. Meanwhile, an enhanced edge similarity function between two nearest neighboring nodes is formulated to deal with the small-weight-accumulation problem in textureless regions. Consequently, the cost volume can be well aggregated. The proposed method is demonstrated on Middlebury v.2 & v.3 datasets and can obtain good performance in disparity accuracy compared with other five MST based stereo matching methods." @default.
- W4311979613 created "2023-01-03" @default.
- W4311979613 creator A5002487675 @default.
- W4311979613 creator A5006116815 @default.
- W4311979613 creator A5036647743 @default.
- W4311979613 creator A5071235363 @default.
- W4311979613 creator A5090660158 @default.
- W4311979613 date "2022-12-06" @default.
- W4311979613 modified "2023-10-04" @default.
- W4311979613 title "Forward-Backward Diffusion and Pruning-Based Cost Aggregation for Non-Local Stereo Matching" @default.
- W4311979613 doi "https://doi.org/10.3233/atde221021" @default.
- W4311979613 hasPublicationYear "2022" @default.
- W4311979613 type Work @default.
- W4311979613 citedByCount "0" @default.
- W4311979613 crossrefType "book-chapter" @default.
- W4311979613 hasAuthorship W4311979613A5002487675 @default.
- W4311979613 hasAuthorship W4311979613A5006116815 @default.
- W4311979613 hasAuthorship W4311979613A5036647743 @default.
- W4311979613 hasAuthorship W4311979613A5071235363 @default.
- W4311979613 hasAuthorship W4311979613A5090660158 @default.
- W4311979613 hasBestOaLocation W43119796131 @default.
- W4311979613 hasConcept C105795698 @default.
- W4311979613 hasConcept C108010975 @default.
- W4311979613 hasConcept C113174947 @default.
- W4311979613 hasConcept C11413529 @default.
- W4311979613 hasConcept C114614502 @default.
- W4311979613 hasConcept C115961682 @default.
- W4311979613 hasConcept C127413603 @default.
- W4311979613 hasConcept C132525143 @default.
- W4311979613 hasConcept C13743678 @default.
- W4311979613 hasConcept C153180895 @default.
- W4311979613 hasConcept C154945302 @default.
- W4311979613 hasConcept C162307627 @default.
- W4311979613 hasConcept C163797641 @default.
- W4311979613 hasConcept C165064840 @default.
- W4311979613 hasConcept C197855036 @default.
- W4311979613 hasConcept C31972630 @default.
- W4311979613 hasConcept C33923547 @default.
- W4311979613 hasConcept C41008148 @default.
- W4311979613 hasConcept C62611344 @default.
- W4311979613 hasConcept C64331007 @default.
- W4311979613 hasConcept C6557445 @default.
- W4311979613 hasConcept C66938386 @default.
- W4311979613 hasConcept C86803240 @default.
- W4311979613 hasConceptScore W4311979613C105795698 @default.
- W4311979613 hasConceptScore W4311979613C108010975 @default.
- W4311979613 hasConceptScore W4311979613C113174947 @default.
- W4311979613 hasConceptScore W4311979613C11413529 @default.
- W4311979613 hasConceptScore W4311979613C114614502 @default.
- W4311979613 hasConceptScore W4311979613C115961682 @default.
- W4311979613 hasConceptScore W4311979613C127413603 @default.
- W4311979613 hasConceptScore W4311979613C132525143 @default.
- W4311979613 hasConceptScore W4311979613C13743678 @default.
- W4311979613 hasConceptScore W4311979613C153180895 @default.
- W4311979613 hasConceptScore W4311979613C154945302 @default.
- W4311979613 hasConceptScore W4311979613C162307627 @default.
- W4311979613 hasConceptScore W4311979613C163797641 @default.
- W4311979613 hasConceptScore W4311979613C165064840 @default.
- W4311979613 hasConceptScore W4311979613C197855036 @default.
- W4311979613 hasConceptScore W4311979613C31972630 @default.
- W4311979613 hasConceptScore W4311979613C33923547 @default.
- W4311979613 hasConceptScore W4311979613C41008148 @default.
- W4311979613 hasConceptScore W4311979613C62611344 @default.
- W4311979613 hasConceptScore W4311979613C64331007 @default.
- W4311979613 hasConceptScore W4311979613C6557445 @default.
- W4311979613 hasConceptScore W4311979613C66938386 @default.
- W4311979613 hasConceptScore W4311979613C86803240 @default.
- W4311979613 hasLocation W43119796131 @default.
- W4311979613 hasOpenAccess W4311979613 @default.
- W4311979613 hasPrimaryLocation W43119796131 @default.
- W4311979613 hasRelatedWork W1494675886 @default.
- W4311979613 hasRelatedWork W1989698351 @default.
- W4311979613 hasRelatedWork W1991082127 @default.
- W4311979613 hasRelatedWork W1995188412 @default.
- W4311979613 hasRelatedWork W1997194225 @default.
- W4311979613 hasRelatedWork W1997942003 @default.
- W4311979613 hasRelatedWork W2027302803 @default.
- W4311979613 hasRelatedWork W2391245565 @default.
- W4311979613 hasRelatedWork W2763966779 @default.
- W4311979613 hasRelatedWork W3100366047 @default.
- W4311979613 isParatext "false" @default.
- W4311979613 isRetracted "false" @default.
- W4311979613 workType "book-chapter" @default.