Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311980083> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4311980083 endingPage "2179" @default.
- W4311980083 startingPage "2167" @default.
- W4311980083 abstract "Hyperspectral images usually comprise several continuous spectral bands that represent the category of similar objects or material within the captured scene. These high-dimensional data structures have a high level of correlation and possess unique information that can be used for precise image classification. The precise selection of useful features from these high dimensional band information is very important to reduce the challenge of hyper spectral image classification approaches. Nowadays, metaheuristic algorithms are immensely utilized as a promising tool for hyperspectral image classification. In the present research work, hyperspectral images are classified with the various combinations of meta-heuristic approaches and the neural network including the mostly used Cuckoo Search (CS) optimization algorithm to resolve the global optimization search problems considering the improvement needed in image classification. Further, the strength of CS is improved using the integration of the Genetic Algorithm (GA) fitness function within the CS. The feature selection is performed by the hybrid CS and GA algorithm and the optimized features are then fed to ANN for training and classification. The paper has shown a comparative analysis of various meta heuristics techniques with ANN on parameters like kappa coefficient, Class accuracy and overall Accuracy and the designed algorithms are tested on the Indian Pines dataset. The proposed CS and GA with ANN outperformed the two already existing works with an overall average accuracy of 97.30% and a kappa coefficient of 0.9760." @default.
- W4311980083 created "2023-01-03" @default.
- W4311980083 creator A5021661883 @default.
- W4311980083 creator A5039216186 @default.
- W4311980083 date "2022-11-17" @default.
- W4311980083 modified "2023-09-24" @default.
- W4311980083 title "Hyperspectral image classification using meta-heuristics and artificial neural network" @default.
- W4311980083 cites W1757526630 @default.
- W4311980083 cites W1983710474 @default.
- W4311980083 cites W2096038730 @default.
- W4311980083 cites W2109836508 @default.
- W4311980083 cites W2169709581 @default.
- W4311980083 cites W2172142075 @default.
- W4311980083 cites W2184933509 @default.
- W4311980083 cites W2514028694 @default.
- W4311980083 cites W2908286879 @default.
- W4311980083 cites W2987256191 @default.
- W4311980083 cites W2994496567 @default.
- W4311980083 cites W2999900146 @default.
- W4311980083 cites W3014738309 @default.
- W4311980083 cites W3021253061 @default.
- W4311980083 cites W3025814382 @default.
- W4311980083 cites W3177877105 @default.
- W4311980083 cites W4248253651 @default.
- W4311980083 cites W4288343928 @default.
- W4311980083 doi "https://doi.org/10.1080/02522667.2022.2133222" @default.
- W4311980083 hasPublicationYear "2022" @default.
- W4311980083 type Work @default.
- W4311980083 citedByCount "0" @default.
- W4311980083 crossrefType "journal-article" @default.
- W4311980083 hasAuthorship W4311980083A5021661883 @default.
- W4311980083 hasAuthorship W4311980083A5039216186 @default.
- W4311980083 hasConcept C109718341 @default.
- W4311980083 hasConcept C111919701 @default.
- W4311980083 hasConcept C115961682 @default.
- W4311980083 hasConcept C117241572 @default.
- W4311980083 hasConcept C119857082 @default.
- W4311980083 hasConcept C124101348 @default.
- W4311980083 hasConcept C127705205 @default.
- W4311980083 hasConcept C148483581 @default.
- W4311980083 hasConcept C153180895 @default.
- W4311980083 hasConcept C154945302 @default.
- W4311980083 hasConcept C159078339 @default.
- W4311980083 hasConcept C173801870 @default.
- W4311980083 hasConcept C176066374 @default.
- W4311980083 hasConcept C41008148 @default.
- W4311980083 hasConcept C50644808 @default.
- W4311980083 hasConcept C75294576 @default.
- W4311980083 hasConcept C85617194 @default.
- W4311980083 hasConcept C8880873 @default.
- W4311980083 hasConceptScore W4311980083C109718341 @default.
- W4311980083 hasConceptScore W4311980083C111919701 @default.
- W4311980083 hasConceptScore W4311980083C115961682 @default.
- W4311980083 hasConceptScore W4311980083C117241572 @default.
- W4311980083 hasConceptScore W4311980083C119857082 @default.
- W4311980083 hasConceptScore W4311980083C124101348 @default.
- W4311980083 hasConceptScore W4311980083C127705205 @default.
- W4311980083 hasConceptScore W4311980083C148483581 @default.
- W4311980083 hasConceptScore W4311980083C153180895 @default.
- W4311980083 hasConceptScore W4311980083C154945302 @default.
- W4311980083 hasConceptScore W4311980083C159078339 @default.
- W4311980083 hasConceptScore W4311980083C173801870 @default.
- W4311980083 hasConceptScore W4311980083C176066374 @default.
- W4311980083 hasConceptScore W4311980083C41008148 @default.
- W4311980083 hasConceptScore W4311980083C50644808 @default.
- W4311980083 hasConceptScore W4311980083C75294576 @default.
- W4311980083 hasConceptScore W4311980083C85617194 @default.
- W4311980083 hasConceptScore W4311980083C8880873 @default.
- W4311980083 hasIssue "8" @default.
- W4311980083 hasLocation W43119800831 @default.
- W4311980083 hasOpenAccess W4311980083 @default.
- W4311980083 hasPrimaryLocation W43119800831 @default.
- W4311980083 hasRelatedWork W1490523270 @default.
- W4311980083 hasRelatedWork W1995333990 @default.
- W4311980083 hasRelatedWork W1996625429 @default.
- W4311980083 hasRelatedWork W2063534473 @default.
- W4311980083 hasRelatedWork W2089731888 @default.
- W4311980083 hasRelatedWork W2316780152 @default.
- W4311980083 hasRelatedWork W2547662141 @default.
- W4311980083 hasRelatedWork W2592385986 @default.
- W4311980083 hasRelatedWork W2598259734 @default.
- W4311980083 hasRelatedWork W2972973180 @default.
- W4311980083 hasVolume "43" @default.
- W4311980083 isParatext "false" @default.
- W4311980083 isRetracted "false" @default.
- W4311980083 workType "article" @default.