Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311993710> ?p ?o ?g. }
- W4311993710 endingPage "24" @default.
- W4311993710 startingPage "17" @default.
- W4311993710 abstract "Artificial intelligence is playing an increasingly important role in many fields of clinical care to assist health care providers in patient management. In adult-focused nephrology, artificial intelligence is beginning to be used to improve clinical care, hemodialysis prescriptions, and follow-up of transplant recipients. This article provides an overview of medical artificial intelligence applications relevant to pediatric nephrology. We describe the core concepts of artificial intelligence and machine learning and cover the basics of neural networks and deep learning. We also discuss some examples for clinical applications of artificial intelligence in pediatric nephrology, including neonatal kidney function, early recognition of acute kidney injury, renally cleared drug dosing, intrapatient variability, urinary tract infection workup in infancy, and longitudinal disease progression. Furthermore, we consider the future of artificial intelligence in clinical pediatric nephrology and its potential impact on medical practice and address the ethical issues artificial intelligence raises in terms of clinical decision-making, health care provider-patient relationship, patient privacy, and data collection. This article also represents a call for action involving those of us striving to provide optimal services for children, adolescents, and young adults with chronic conditions." @default.
- W4311993710 created "2023-01-03" @default.
- W4311993710 creator A5042683401 @default.
- W4311993710 creator A5048128579 @default.
- W4311993710 creator A5054993212 @default.
- W4311993710 creator A5062607913 @default.
- W4311993710 date "2023-01-01" @default.
- W4311993710 modified "2023-10-05" @default.
- W4311993710 title "Artificial Intelligence in Pediatric Nephrology—A Call for Action" @default.
- W4311993710 cites W1966744297 @default.
- W4311993710 cites W1971361422 @default.
- W4311993710 cites W1991243622 @default.
- W4311993710 cites W2034681608 @default.
- W4311993710 cites W2069409074 @default.
- W4311993710 cites W2088264741 @default.
- W4311993710 cites W2095533277 @default.
- W4311993710 cites W2096799462 @default.
- W4311993710 cites W2122527560 @default.
- W4311993710 cites W2140166463 @default.
- W4311993710 cites W2235398833 @default.
- W4311993710 cites W2239098777 @default.
- W4311993710 cites W2286587306 @default.
- W4311993710 cites W2346071339 @default.
- W4311993710 cites W2557738935 @default.
- W4311993710 cites W2738975713 @default.
- W4311993710 cites W2747116615 @default.
- W4311993710 cites W2761123249 @default.
- W4311993710 cites W2789970635 @default.
- W4311993710 cites W2802875031 @default.
- W4311993710 cites W2812840717 @default.
- W4311993710 cites W2903777941 @default.
- W4311993710 cites W2906295032 @default.
- W4311993710 cites W2913777302 @default.
- W4311993710 cites W2916559661 @default.
- W4311993710 cites W2941964694 @default.
- W4311993710 cites W2957730340 @default.
- W4311993710 cites W2969528126 @default.
- W4311993710 cites W3005219125 @default.
- W4311993710 cites W3036198246 @default.
- W4311993710 cites W3042276730 @default.
- W4311993710 cites W3081508779 @default.
- W4311993710 cites W3082721369 @default.
- W4311993710 cites W3119646323 @default.
- W4311993710 cites W3126783352 @default.
- W4311993710 cites W3140986464 @default.
- W4311993710 cites W3158963068 @default.
- W4311993710 cites W3192447662 @default.
- W4311993710 cites W3207415786 @default.
- W4311993710 cites W4200115165 @default.
- W4311993710 cites W4200289901 @default.
- W4311993710 cites W4205637445 @default.
- W4311993710 cites W4206172748 @default.
- W4311993710 cites W4210546667 @default.
- W4311993710 cites W4210867129 @default.
- W4311993710 cites W4220654363 @default.
- W4311993710 cites W4224289643 @default.
- W4311993710 cites W4225419655 @default.
- W4311993710 cites W4225820819 @default.
- W4311993710 cites W4226070642 @default.
- W4311993710 cites W4280558647 @default.
- W4311993710 cites W4281632226 @default.
- W4311993710 cites W4283161367 @default.
- W4311993710 cites W4283217635 @default.
- W4311993710 cites W4283374622 @default.
- W4311993710 cites W4283763482 @default.
- W4311993710 cites W4292087080 @default.
- W4311993710 cites W4293105185 @default.
- W4311993710 cites W4294012891 @default.
- W4311993710 cites W4294218751 @default.
- W4311993710 doi "https://doi.org/10.1053/j.akdh.2022.11.001" @default.
- W4311993710 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36723276" @default.
- W4311993710 hasPublicationYear "2023" @default.
- W4311993710 type Work @default.
- W4311993710 citedByCount "0" @default.
- W4311993710 crossrefType "journal-article" @default.
- W4311993710 hasAuthorship W4311993710A5042683401 @default.
- W4311993710 hasAuthorship W4311993710A5048128579 @default.
- W4311993710 hasAuthorship W4311993710A5054993212 @default.
- W4311993710 hasAuthorship W4311993710A5062607913 @default.
- W4311993710 hasBestOaLocation W43119937101 @default.
- W4311993710 hasConcept C126322002 @default.
- W4311993710 hasConcept C154945302 @default.
- W4311993710 hasConcept C159110408 @default.
- W4311993710 hasConcept C160735492 @default.
- W4311993710 hasConcept C162324750 @default.
- W4311993710 hasConcept C177713679 @default.
- W4311993710 hasConcept C2426938 @default.
- W4311993710 hasConcept C2779978075 @default.
- W4311993710 hasConcept C41008148 @default.
- W4311993710 hasConcept C50522688 @default.
- W4311993710 hasConcept C54847362 @default.
- W4311993710 hasConcept C71924100 @default.
- W4311993710 hasConceptScore W4311993710C126322002 @default.
- W4311993710 hasConceptScore W4311993710C154945302 @default.
- W4311993710 hasConceptScore W4311993710C159110408 @default.
- W4311993710 hasConceptScore W4311993710C160735492 @default.
- W4311993710 hasConceptScore W4311993710C162324750 @default.
- W4311993710 hasConceptScore W4311993710C177713679 @default.