Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311995757> ?p ?o ?g. }
- W4311995757 endingPage "6238" @default.
- W4311995757 startingPage "6238" @default.
- W4311995757 abstract "Water quality grade is an intuitive element for people to understand the condition of water quality. However, in situ water quality grade measurements are often labor intensive, which makes measurement over large areas very costly and laborious. In recent years, numerous studies have demonstrated the effectiveness of remote sensing techniques in monitoring water quality. In order to automatically extract the water quality information, machine learning technologies have been widely applied in remote sensing data interoperation. In this study, Landsat-8 data and deep neural networks (DNN) were employed to identify the water quality grades of lakes in two cities, Wuhan and Huangshi, in the middle reach of the Yangtze River, central China. Additionally, linear support vector machine (L-SVM), random forest (RF), decision tree (DT), and multi-layer perceptron (MLP) were selected as comparative methods. The experimental results showed that DNN achieved the most promising performance compared to the other approaches. For the lakes in Wuhan, DNN gave water quality results with overall accuracy (OA) of 93.37% and Kappa of 0.9028. For the lakes in Huangshi, OA and kappa given by DNN were 96.39% and 0.951, respectively. The results show that the use of remote sensing images for water quality grade monitoring is effective. In the future, our method can be used for water quality monitoring of lakes in large areas at a low cost." @default.
- W4311995757 created "2023-01-03" @default.
- W4311995757 creator A5003046062 @default.
- W4311995757 creator A5012369431 @default.
- W4311995757 creator A5022375438 @default.
- W4311995757 creator A5043005954 @default.
- W4311995757 creator A5077410212 @default.
- W4311995757 creator A5078175523 @default.
- W4311995757 creator A5081905280 @default.
- W4311995757 creator A5084718593 @default.
- W4311995757 date "2022-12-09" @default.
- W4311995757 modified "2023-10-04" @default.
- W4311995757 title "Water Quality Grade Identification for Lakes in Middle Reaches of Yangtze River Using Landsat-8 Data with Deep Neural Networks (DNN) Model" @default.
- W4311995757 cites W1965287008 @default.
- W4311995757 cites W1984127772 @default.
- W4311995757 cites W1985687698 @default.
- W4311995757 cites W2018349799 @default.
- W4311995757 cites W2031775731 @default.
- W4311995757 cites W2038241098 @default.
- W4311995757 cites W2076627662 @default.
- W4311995757 cites W2136922672 @default.
- W4311995757 cites W2160815625 @default.
- W4311995757 cites W2314756334 @default.
- W4311995757 cites W2324390334 @default.
- W4311995757 cites W2328166024 @default.
- W4311995757 cites W2523864098 @default.
- W4311995757 cites W2563860341 @default.
- W4311995757 cites W2592340788 @default.
- W4311995757 cites W2616755213 @default.
- W4311995757 cites W2891574421 @default.
- W4311995757 cites W2900712384 @default.
- W4311995757 cites W2912371366 @default.
- W4311995757 cites W2940668261 @default.
- W4311995757 cites W2961466663 @default.
- W4311995757 cites W2970680136 @default.
- W4311995757 cites W2972110769 @default.
- W4311995757 cites W2972310473 @default.
- W4311995757 cites W2972417230 @default.
- W4311995757 cites W2972857509 @default.
- W4311995757 cites W2973946506 @default.
- W4311995757 cites W2975225574 @default.
- W4311995757 cites W2978867936 @default.
- W4311995757 cites W2979415579 @default.
- W4311995757 cites W2979477635 @default.
- W4311995757 cites W3004942926 @default.
- W4311995757 cites W3010239347 @default.
- W4311995757 cites W3014247046 @default.
- W4311995757 cites W3015988182 @default.
- W4311995757 cites W3023999159 @default.
- W4311995757 cites W3027604340 @default.
- W4311995757 cites W3029014910 @default.
- W4311995757 cites W3034547948 @default.
- W4311995757 cites W3037289197 @default.
- W4311995757 cites W3046881646 @default.
- W4311995757 cites W3072469235 @default.
- W4311995757 cites W3089958506 @default.
- W4311995757 cites W3093118884 @default.
- W4311995757 cites W3120245422 @default.
- W4311995757 cites W3158913934 @default.
- W4311995757 cites W3185785818 @default.
- W4311995757 cites W3205507466 @default.
- W4311995757 cites W4200467817 @default.
- W4311995757 cites W4281655373 @default.
- W4311995757 cites W4283071960 @default.
- W4311995757 cites W4284894552 @default.
- W4311995757 doi "https://doi.org/10.3390/rs14246238" @default.
- W4311995757 hasPublicationYear "2022" @default.
- W4311995757 type Work @default.
- W4311995757 citedByCount "2" @default.
- W4311995757 countsByYear W43119957572023 @default.
- W4311995757 crossrefType "journal-article" @default.
- W4311995757 hasAuthorship W4311995757A5003046062 @default.
- W4311995757 hasAuthorship W4311995757A5012369431 @default.
- W4311995757 hasAuthorship W4311995757A5022375438 @default.
- W4311995757 hasAuthorship W4311995757A5043005954 @default.
- W4311995757 hasAuthorship W4311995757A5077410212 @default.
- W4311995757 hasAuthorship W4311995757A5078175523 @default.
- W4311995757 hasAuthorship W4311995757A5081905280 @default.
- W4311995757 hasAuthorship W4311995757A5084718593 @default.
- W4311995757 hasBestOaLocation W43119957571 @default.
- W4311995757 hasConcept C12267149 @default.
- W4311995757 hasConcept C127313418 @default.
- W4311995757 hasConcept C154945302 @default.
- W4311995757 hasConcept C169258074 @default.
- W4311995757 hasConcept C179717631 @default.
- W4311995757 hasConcept C187320778 @default.
- W4311995757 hasConcept C18903297 @default.
- W4311995757 hasConcept C2780797713 @default.
- W4311995757 hasConcept C39432304 @default.
- W4311995757 hasConcept C41008148 @default.
- W4311995757 hasConcept C50644808 @default.
- W4311995757 hasConcept C62649853 @default.
- W4311995757 hasConcept C76886044 @default.
- W4311995757 hasConcept C84525736 @default.
- W4311995757 hasConcept C86803240 @default.
- W4311995757 hasConceptScore W4311995757C12267149 @default.
- W4311995757 hasConceptScore W4311995757C127313418 @default.
- W4311995757 hasConceptScore W4311995757C154945302 @default.