Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311997435> ?p ?o ?g. }
- W4311997435 abstract "<sec> <title>BACKGROUND</title> Routine check-ups for adolescent idiopathic scoliosis are critical to monitor progression and prescribe interventions. AIS is primarily screened via physical examination. If there are features of deformity, radiographs are necessary for diagnosis or follow-up, guiding further management, i.e., bracing corrections for moderate deformities and spine surgeries for severe deformities. However, this subjects children to repetitive radiation and routine practices can be disturbed. </sec> <sec> <title>OBJECTIVE</title> We aim to develop and prospectively validate an open mobile platform powered by validated deep learning models known as ScolioNets, for AIS severity and curve type classifications as well as progression identifications, to facilitate timely management of AIS with no extra radiation exposure. </sec> <sec> <title>METHODS</title> During the technology development stage, ScolioNets was trained and validated by 1780 back photos, consisting of heterogeneous severities and curve types. The ground truth (GT) labels for severity (follow-up vs. considering surgery), curve type (thoracic, thoracolumbar/lumbar, or mixed curve types) and progression (progress vs. non-grogress) were manually annotated by experienced deformity surgeons based on the radiographic examinations of the participants’ spines. Further prospective testing on 378 patients was conducted after the validated ScolioNets was deployed on our open platform AlignProCARE. In addition to comparing with the GTs, the results were also compared with two spine surgeons’ assessments of nude back appearance, while they were blinded to the GT measurements. Quantitative statistical analyses were performed to assess the performance of the open platform in classifying the deformity as well as in distinguishing progression during follow-up. </sec> <sec> <title>RESULTS</title> The platform recommended follow-up or surgery with the area under curves (AUCs) of receiver operating characteristic curves being 0.839, and 0.902, while distinguishing among thoracic, thoracolumbar/lumbar, or mixed curve types with AUCs of 0.777, 0.760 and 0.860 respectively. For follow-ups, we distinguished subjects with or without curve progression with an AUC of 0.757. All results were comparable with the senior surgeon’s assessment results and superior to the junior spine surgeon’s results. </sec> <sec> <title>CONCLUSIONS</title> Our open platform has the potential for out-of-hospital accessible and radiation-free applications in managing children with AIS, with comparable performance as a spine surgeon experienced in AIS management. </sec>" @default.
- W4311997435 created "2023-01-03" @default.
- W4311997435 creator A5014067230 @default.
- W4311997435 creator A5021302609 @default.
- W4311997435 creator A5023767707 @default.
- W4311997435 creator A5027835055 @default.
- W4311997435 creator A5032080729 @default.
- W4311997435 creator A5033785543 @default.
- W4311997435 creator A5038962699 @default.
- W4311997435 creator A5044855132 @default.
- W4311997435 creator A5056709272 @default.
- W4311997435 creator A5073225634 @default.
- W4311997435 creator A5084948021 @default.
- W4311997435 date "2022-12-19" @default.
- W4311997435 modified "2023-09-29" @default.
- W4311997435 title "Radiation-Less Monitoring of Scoliosis Based on Single Back Photographs Using Smartphones and an Open System Powered by Deep Learning: System Development and Longitudinal Evaluation (Preprint)" @default.
- W4311997435 cites W1592969986 @default.
- W4311997435 cites W2002983477 @default.
- W4311997435 cites W2021761973 @default.
- W4311997435 cites W2028138594 @default.
- W4311997435 cites W2031491182 @default.
- W4311997435 cites W2069726332 @default.
- W4311997435 cites W2141841210 @default.
- W4311997435 cites W2145943055 @default.
- W4311997435 cites W2150905911 @default.
- W4311997435 cites W2158785895 @default.
- W4311997435 cites W2170505850 @default.
- W4311997435 cites W2194775991 @default.
- W4311997435 cites W2281843965 @default.
- W4311997435 cites W2295107390 @default.
- W4311997435 cites W2549139847 @default.
- W4311997435 cites W2582164968 @default.
- W4311997435 cites W2594810826 @default.
- W4311997435 cites W2752782242 @default.
- W4311997435 cites W2767106145 @default.
- W4311997435 cites W2898193142 @default.
- W4311997435 cites W2916452242 @default.
- W4311997435 cites W2917635635 @default.
- W4311997435 cites W2954996726 @default.
- W4311997435 cites W2963430933 @default.
- W4311997435 cites W2963446712 @default.
- W4311997435 cites W2963495494 @default.
- W4311997435 cites W2963558486 @default.
- W4311997435 cites W2963811535 @default.
- W4311997435 cites W2964350391 @default.
- W4311997435 cites W2970802276 @default.
- W4311997435 cites W2979801810 @default.
- W4311997435 cites W2989219518 @default.
- W4311997435 cites W3010219363 @default.
- W4311997435 cites W3016608325 @default.
- W4311997435 cites W3026371816 @default.
- W4311997435 cites W3026579047 @default.
- W4311997435 cites W3035253074 @default.
- W4311997435 cites W3126008863 @default.
- W4311997435 cites W3132591370 @default.
- W4311997435 cites W3133402851 @default.
- W4311997435 cites W3146366485 @default.
- W4311997435 cites W3171746194 @default.
- W4311997435 cites W3171873561 @default.
- W4311997435 cites W3177079919 @default.
- W4311997435 cites W3193427204 @default.
- W4311997435 cites W3203631022 @default.
- W4311997435 cites W3215297065 @default.
- W4311997435 cites W4200591402 @default.
- W4311997435 cites W4205301424 @default.
- W4311997435 cites W4205635370 @default.
- W4311997435 cites W4225151235 @default.
- W4311997435 cites W4232510938 @default.
- W4311997435 cites W4248193879 @default.
- W4311997435 cites W4281476135 @default.
- W4311997435 cites W4293417625 @default.
- W4311997435 cites W87014095 @default.
- W4311997435 doi "https://doi.org/10.2196/preprints.45073" @default.
- W4311997435 hasPublicationYear "2022" @default.
- W4311997435 type Work @default.
- W4311997435 citedByCount "0" @default.
- W4311997435 crossrefType "posted-content" @default.
- W4311997435 hasAuthorship W4311997435A5014067230 @default.
- W4311997435 hasAuthorship W4311997435A5021302609 @default.
- W4311997435 hasAuthorship W4311997435A5023767707 @default.
- W4311997435 hasAuthorship W4311997435A5027835055 @default.
- W4311997435 hasAuthorship W4311997435A5032080729 @default.
- W4311997435 hasAuthorship W4311997435A5033785543 @default.
- W4311997435 hasAuthorship W4311997435A5038962699 @default.
- W4311997435 hasAuthorship W4311997435A5044855132 @default.
- W4311997435 hasAuthorship W4311997435A5056709272 @default.
- W4311997435 hasAuthorship W4311997435A5073225634 @default.
- W4311997435 hasAuthorship W4311997435A5084948021 @default.
- W4311997435 hasConcept C108583219 @default.
- W4311997435 hasConcept C111919701 @default.
- W4311997435 hasConcept C141071460 @default.
- W4311997435 hasConcept C154945302 @default.
- W4311997435 hasConcept C1862650 @default.
- W4311997435 hasConcept C19527891 @default.
- W4311997435 hasConcept C2778871979 @default.
- W4311997435 hasConcept C2779982284 @default.
- W4311997435 hasConcept C2780955175 @default.
- W4311997435 hasConcept C34585555 @default.
- W4311997435 hasConcept C36454342 @default.
- W4311997435 hasConcept C41008148 @default.