Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312011171> ?p ?o ?g. }
- W4312011171 endingPage "173" @default.
- W4312011171 startingPage "159" @default.
- W4312011171 abstract "The aim of this study is to predict the profitability of Indian banks. Several factors both internal and external, affecting bank profitability were derived from extensive review of literature. We used Artificial Neural Network (ANN) with cross-validation technique to perform predictive analysis. ANN was chosen due to its flexibility and non-linear modelling capability. Several structures of ANN with a single and two hidden layers along with varying hidden neurons were implemented. Further, a comparison was made with the multiple linear regression (MLR) model. We found the models based on ANN to offer very accurate results in prediction and are marginally better as compared to the regression model. Higher accuracy of the model makes a significant difference due to the astronomically large size of the balance sheet of banks. This article is unique in the approach of handling the panel data for predictive analysis wherein the training of the model was done on a single bank’s data, thus, reducing the panel data to a time series data. This approach shows the ability to work with large panel data and make accurate predictions." @default.
- W4312011171 created "2023-01-03" @default.
- W4312011171 creator A5029974695 @default.
- W4312011171 creator A5074911421 @default.
- W4312011171 creator A5080691948 @default.
- W4312011171 date "2022-12-20" @default.
- W4312011171 modified "2023-09-23" @default.
- W4312011171 title "Application of artificial neural network model in predicting profitability of Indian banks" @default.
- W4312011171 cites W1974857061 @default.
- W4312011171 cites W1980468535 @default.
- W4312011171 cites W1980836123 @default.
- W4312011171 cites W1987738440 @default.
- W4312011171 cites W1988221687 @default.
- W4312011171 cites W1990176981 @default.
- W4312011171 cites W1991041654 @default.
- W4312011171 cites W1992175460 @default.
- W4312011171 cites W1996984227 @default.
- W4312011171 cites W1997754540 @default.
- W4312011171 cites W1998442441 @default.
- W4312011171 cites W2009147229 @default.
- W4312011171 cites W2017988846 @default.
- W4312011171 cites W2019207324 @default.
- W4312011171 cites W2020509363 @default.
- W4312011171 cites W2025610165 @default.
- W4312011171 cites W2036753645 @default.
- W4312011171 cites W2039049978 @default.
- W4312011171 cites W2040458420 @default.
- W4312011171 cites W2042338563 @default.
- W4312011171 cites W2046933993 @default.
- W4312011171 cites W2059852492 @default.
- W4312011171 cites W2065926809 @default.
- W4312011171 cites W2075595911 @default.
- W4312011171 cites W2075756660 @default.
- W4312011171 cites W2082102618 @default.
- W4312011171 cites W2086832406 @default.
- W4312011171 cites W2102148524 @default.
- W4312011171 cites W2105141346 @default.
- W4312011171 cites W2105372698 @default.
- W4312011171 cites W2105443690 @default.
- W4312011171 cites W2111652331 @default.
- W4312011171 cites W2119586505 @default.
- W4312011171 cites W2137356002 @default.
- W4312011171 cites W2138552730 @default.
- W4312011171 cites W2150059822 @default.
- W4312011171 cites W2162116136 @default.
- W4312011171 cites W2167639294 @default.
- W4312011171 cites W2171220315 @default.
- W4312011171 cites W2174649406 @default.
- W4312011171 cites W2203023521 @default.
- W4312011171 cites W2289619256 @default.
- W4312011171 cites W2311731096 @default.
- W4312011171 cites W2464006516 @default.
- W4312011171 cites W2571232718 @default.
- W4312011171 cites W2778273369 @default.
- W4312011171 cites W2796531944 @default.
- W4312011171 cites W2811430011 @default.
- W4312011171 cites W2947178461 @default.
- W4312011171 cites W2996391725 @default.
- W4312011171 cites W3025987075 @default.
- W4312011171 cites W3039858541 @default.
- W4312011171 cites W3081705998 @default.
- W4312011171 cites W3085098545 @default.
- W4312011171 cites W3094490791 @default.
- W4312011171 cites W3116904700 @default.
- W4312011171 cites W3121433632 @default.
- W4312011171 cites W3121440286 @default.
- W4312011171 cites W3121626226 @default.
- W4312011171 cites W3122115299 @default.
- W4312011171 cites W3122204840 @default.
- W4312011171 cites W3122379432 @default.
- W4312011171 cites W3123416450 @default.
- W4312011171 cites W3123496354 @default.
- W4312011171 cites W3123843329 @default.
- W4312011171 cites W3123909386 @default.
- W4312011171 cites W3124026326 @default.
- W4312011171 cites W3124170885 @default.
- W4312011171 cites W3124315258 @default.
- W4312011171 cites W3124717415 @default.
- W4312011171 cites W3124982262 @default.
- W4312011171 cites W3125574944 @default.
- W4312011171 cites W3125663788 @default.
- W4312011171 cites W3125749048 @default.
- W4312011171 cites W3126111461 @default.
- W4312011171 cites W3128145459 @default.
- W4312011171 cites W3150796314 @default.
- W4312011171 cites W3178510572 @default.
- W4312011171 cites W3182770386 @default.
- W4312011171 cites W3214840804 @default.
- W4312011171 cites W4298188295 @default.
- W4312011171 doi "https://doi.org/10.3233/kes-220020" @default.
- W4312011171 hasPublicationYear "2022" @default.
- W4312011171 type Work @default.
- W4312011171 citedByCount "0" @default.
- W4312011171 crossrefType "journal-article" @default.
- W4312011171 hasAuthorship W4312011171A5029974695 @default.
- W4312011171 hasAuthorship W4312011171A5074911421 @default.
- W4312011171 hasAuthorship W4312011171A5080691948 @default.
- W4312011171 hasConcept C10138342 @default.