Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312018356> ?p ?o ?g. }
- W4312018356 endingPage "102157" @default.
- W4312018356 startingPage "102157" @default.
- W4312018356 abstract "Automated methods for segmentation-based brain volumetry may be confounded by the presence of white matter (WM) lesions, which introduce abnormal intensities that can alter the classification of not only neighboring but also distant brain tissue. These lesions are common in pathologies where brain volumetry is also an important prognostic marker, such as in multiple sclerosis (MS), and thus reducing their effects is critical for improving volumetric accuracy and reliability. In this work, we analyze the effect of WM lesions on deep learning based brain tissue segmentation methods for brain volumetry and introduce techniques to reduce the error these lesions produce on the measured volumes. We propose a 3D patch-based deep learning framework for brain tissue segmentation which is trained on the outputs of a reference classical method. To deal more robustly with pathological cases having WM lesions, we use a combination of small patches and a percentile-based input normalization. To minimize the effect of WM lesions, we also propose a multi-task double U-Net architecture performing end-to-end inpainting and segmentation, along with a training data generation procedure. In the evaluation, we first analyze the error introduced by artificial WM lesions on our framework as well as in the reference segmentation method without the use of lesion inpainting techniques. To the best of our knowledge, this is the first analysis of WM lesion effect on a deep learning based tissue segmentation approach for brain volumetry. The proposed framework shows a significantly smaller and more localized error introduced by WM lesions than the reference segmentation method, that displays much larger global differences. We also evaluated the proposed lesion effect minimization technique by comparing the measured volumes before and after introducing artificial WM lesions to healthy images. The proposed approach performing end-to-end inpainting and segmentation effectively reduces the error introduced by small and large WM lesions in the resulting volumetry, obtaining absolute volume differences of 0.01 ± 0.03% for GM and 0.02 ± 0.04% for WM. Increasing the accuracy and reliability of automated brain volumetry methods will reduce the sample size needed to establish meaningful correlations in clinical studies and allow its use in individualized assessments as a diagnostic and prognostic marker for neurodegenerative pathologies." @default.
- W4312018356 created "2023-01-03" @default.
- W4312018356 creator A5027168396 @default.
- W4312018356 creator A5060062918 @default.
- W4312018356 creator A5064897887 @default.
- W4312018356 creator A5078118657 @default.
- W4312018356 creator A5085592048 @default.
- W4312018356 date "2023-01-01" @default.
- W4312018356 modified "2023-10-18" @default.
- W4312018356 title "Minimizing the effect of white matter lesions on deep learning based tissue segmentation for brain volumetry" @default.
- W4312018356 cites W1901129140 @default.
- W4312018356 cites W1943838624 @default.
- W4312018356 cites W1973290871 @default.
- W4312018356 cites W1975760036 @default.
- W4312018356 cites W2022122681 @default.
- W4312018356 cites W2028942474 @default.
- W4312018356 cites W2045516163 @default.
- W4312018356 cites W2053983047 @default.
- W4312018356 cites W2085426053 @default.
- W4312018356 cites W2092729012 @default.
- W4312018356 cites W2132487252 @default.
- W4312018356 cites W2136573752 @default.
- W4312018356 cites W2145035124 @default.
- W4312018356 cites W2145661921 @default.
- W4312018356 cites W2148726987 @default.
- W4312018356 cites W2158742097 @default.
- W4312018356 cites W2183341477 @default.
- W4312018356 cites W2474584762 @default.
- W4312018356 cites W2604830170 @default.
- W4312018356 cites W2612981588 @default.
- W4312018356 cites W2742774307 @default.
- W4312018356 cites W2849179291 @default.
- W4312018356 cites W2897598705 @default.
- W4312018356 cites W2901434856 @default.
- W4312018356 cites W2913689423 @default.
- W4312018356 cites W2952735543 @default.
- W4312018356 cites W3033878890 @default.
- W4312018356 cites W3088843052 @default.
- W4312018356 cites W3089596341 @default.
- W4312018356 cites W3106175743 @default.
- W4312018356 cites W3204849658 @default.
- W4312018356 cites W4235770099 @default.
- W4312018356 doi "https://doi.org/10.1016/j.compmedimag.2022.102157" @default.
- W4312018356 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36535217" @default.
- W4312018356 hasPublicationYear "2023" @default.
- W4312018356 type Work @default.
- W4312018356 citedByCount "2" @default.
- W4312018356 countsByYear W43120183562023 @default.
- W4312018356 crossrefType "journal-article" @default.
- W4312018356 hasAuthorship W4312018356A5027168396 @default.
- W4312018356 hasAuthorship W4312018356A5060062918 @default.
- W4312018356 hasAuthorship W4312018356A5064897887 @default.
- W4312018356 hasAuthorship W4312018356A5078118657 @default.
- W4312018356 hasAuthorship W4312018356A5085592048 @default.
- W4312018356 hasBestOaLocation W43120183561 @default.
- W4312018356 hasConcept C108583219 @default.
- W4312018356 hasConcept C115961682 @default.
- W4312018356 hasConcept C116580362 @default.
- W4312018356 hasConcept C11727466 @default.
- W4312018356 hasConcept C126838900 @default.
- W4312018356 hasConcept C142724271 @default.
- W4312018356 hasConcept C143409427 @default.
- W4312018356 hasConcept C153180895 @default.
- W4312018356 hasConcept C154945302 @default.
- W4312018356 hasConcept C2781156865 @default.
- W4312018356 hasConcept C2781192897 @default.
- W4312018356 hasConcept C41008148 @default.
- W4312018356 hasConcept C54170458 @default.
- W4312018356 hasConcept C71924100 @default.
- W4312018356 hasConcept C89600930 @default.
- W4312018356 hasConceptScore W4312018356C108583219 @default.
- W4312018356 hasConceptScore W4312018356C115961682 @default.
- W4312018356 hasConceptScore W4312018356C116580362 @default.
- W4312018356 hasConceptScore W4312018356C11727466 @default.
- W4312018356 hasConceptScore W4312018356C126838900 @default.
- W4312018356 hasConceptScore W4312018356C142724271 @default.
- W4312018356 hasConceptScore W4312018356C143409427 @default.
- W4312018356 hasConceptScore W4312018356C153180895 @default.
- W4312018356 hasConceptScore W4312018356C154945302 @default.
- W4312018356 hasConceptScore W4312018356C2781156865 @default.
- W4312018356 hasConceptScore W4312018356C2781192897 @default.
- W4312018356 hasConceptScore W4312018356C41008148 @default.
- W4312018356 hasConceptScore W4312018356C54170458 @default.
- W4312018356 hasConceptScore W4312018356C71924100 @default.
- W4312018356 hasConceptScore W4312018356C89600930 @default.
- W4312018356 hasFunder F4320315062 @default.
- W4312018356 hasFunder F4320322121 @default.
- W4312018356 hasFunder F4320322930 @default.
- W4312018356 hasFunder F4320326262 @default.
- W4312018356 hasLocation W43120183561 @default.
- W4312018356 hasLocation W43120183562 @default.
- W4312018356 hasLocation W43120183563 @default.
- W4312018356 hasOpenAccess W4312018356 @default.
- W4312018356 hasPrimaryLocation W43120183561 @default.
- W4312018356 hasRelatedWork W2732415564 @default.
- W4312018356 hasRelatedWork W2790662084 @default.
- W4312018356 hasRelatedWork W2954384599 @default.
- W4312018356 hasRelatedWork W2960184797 @default.