Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312018506> ?p ?o ?g. }
- W4312018506 abstract "Within evidence-based practice (EBP), systematic reviews (SR) are considered the highest level of evidence in that they summarize the best available research and describe the progress in a determined field. Due its methodology, SR require significant time and resources to be performed; they also require repetitive steps that may introduce biases and human errors. Machine learning (ML) algorithms therefore present a promising alternative and a potential game changer to speed up and automate the SR process. This review aims to map the current availability of computational tools that use ML techniques to assist in the performance of SR, and to support authors in the selection of the right software for the performance of evidence synthesis.The mapping review was based on comprehensive searches in electronic databases and software repositories to obtain relevant literature and records, followed by screening for eligibility based on titles, abstracts, and full text by two reviewers. The data extraction consisted of listing and extracting the name and basic characteristics of the included tools, for example a tool's applicability to the various SR stages, pricing options, open-source availability, and type of software. These tools were classified and graphically represented to facilitate the description of our findings.A total of 9653 studies and 585 records were obtained from the structured searches performed on selected bibliometric databases and software repositories respectively. After screening, a total of 119 descriptions from publications and records allowed us to identify 63 tools that assist the SR process using ML techniques.This review provides a high-quality map of currently available ML software to assist the performance of SR. ML algorithms are arguably one of the best techniques at present for the automation of SR. The most promising tools were easily accessible and included a high number of user-friendly features permitting the automation of SR and other kinds of evidence synthesis reviews." @default.
- W4312018506 created "2023-01-03" @default.
- W4312018506 creator A5014188852 @default.
- W4312018506 creator A5015307573 @default.
- W4312018506 creator A5023750050 @default.
- W4312018506 creator A5035106415 @default.
- W4312018506 creator A5058251799 @default.
- W4312018506 creator A5065704442 @default.
- W4312018506 creator A5080656632 @default.
- W4312018506 date "2022-12-16" @default.
- W4312018506 modified "2023-10-11" @default.
- W4312018506 title "Machine learning computational tools to assist the performance of systematic reviews: A mapping review" @default.
- W4312018506 cites W1521682866 @default.
- W4312018506 cites W1541048963 @default.
- W4312018506 cites W1550225886 @default.
- W4312018506 cites W1554040650 @default.
- W4312018506 cites W1561556558 @default.
- W4312018506 cites W1907051618 @default.
- W4312018506 cites W1945965754 @default.
- W4312018506 cites W1977535059 @default.
- W4312018506 cites W1986251315 @default.
- W4312018506 cites W1991173551 @default.
- W4312018506 cites W1997684599 @default.
- W4312018506 cites W2043634247 @default.
- W4312018506 cites W2060536346 @default.
- W4312018506 cites W2066896354 @default.
- W4312018506 cites W2067284187 @default.
- W4312018506 cites W2079283960 @default.
- W4312018506 cites W2080028355 @default.
- W4312018506 cites W2097110957 @default.
- W4312018506 cites W2105924073 @default.
- W4312018506 cites W2106952837 @default.
- W4312018506 cites W2126264646 @default.
- W4312018506 cites W2139479721 @default.
- W4312018506 cites W2145778133 @default.
- W4312018506 cites W2146668368 @default.
- W4312018506 cites W2147469877 @default.
- W4312018506 cites W2165137003 @default.
- W4312018506 cites W2177870565 @default.
- W4312018506 cites W2184378182 @default.
- W4312018506 cites W2406978180 @default.
- W4312018506 cites W2520714999 @default.
- W4312018506 cites W2593758073 @default.
- W4312018506 cites W2600107025 @default.
- W4312018506 cites W2604448873 @default.
- W4312018506 cites W2619694921 @default.
- W4312018506 cites W2735580341 @default.
- W4312018506 cites W2740726890 @default.
- W4312018506 cites W2792530755 @default.
- W4312018506 cites W2794350945 @default.
- W4312018506 cites W2795136738 @default.
- W4312018506 cites W2796575483 @default.
- W4312018506 cites W2797780449 @default.
- W4312018506 cites W2805303998 @default.
- W4312018506 cites W2807522649 @default.
- W4312018506 cites W2808716231 @default.
- W4312018506 cites W2887617069 @default.
- W4312018506 cites W2889764698 @default.
- W4312018506 cites W2905431510 @default.
- W4312018506 cites W2910642642 @default.
- W4312018506 cites W2924891771 @default.
- W4312018506 cites W2952098834 @default.
- W4312018506 cites W2961191798 @default.
- W4312018506 cites W2966868467 @default.
- W4312018506 cites W2969542839 @default.
- W4312018506 cites W2973032093 @default.
- W4312018506 cites W2982683456 @default.
- W4312018506 cites W2999783216 @default.
- W4312018506 cites W3003735349 @default.
- W4312018506 cites W3006138035 @default.
- W4312018506 cites W3087720408 @default.
- W4312018506 cites W3093336514 @default.
- W4312018506 cites W3099252273 @default.
- W4312018506 cites W3128349626 @default.
- W4312018506 cites W4313371821 @default.
- W4312018506 doi "https://doi.org/10.1186/s12874-022-01805-4" @default.
- W4312018506 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36522637" @default.
- W4312018506 hasPublicationYear "2022" @default.
- W4312018506 type Work @default.
- W4312018506 citedByCount "7" @default.
- W4312018506 countsByYear W43120185062023 @default.
- W4312018506 crossrefType "journal-article" @default.
- W4312018506 hasAuthorship W4312018506A5014188852 @default.
- W4312018506 hasAuthorship W4312018506A5015307573 @default.
- W4312018506 hasAuthorship W4312018506A5023750050 @default.
- W4312018506 hasAuthorship W4312018506A5035106415 @default.
- W4312018506 hasAuthorship W4312018506A5058251799 @default.
- W4312018506 hasAuthorship W4312018506A5065704442 @default.
- W4312018506 hasAuthorship W4312018506A5080656632 @default.
- W4312018506 hasBestOaLocation W43120185061 @default.
- W4312018506 hasConcept C10138342 @default.
- W4312018506 hasConcept C111472728 @default.
- W4312018506 hasConcept C111919701 @default.
- W4312018506 hasConcept C119857082 @default.
- W4312018506 hasConcept C124101348 @default.
- W4312018506 hasConcept C138885662 @default.
- W4312018506 hasConcept C162324750 @default.
- W4312018506 hasConcept C17744445 @default.
- W4312018506 hasConcept C189708586 @default.
- W4312018506 hasConcept C199360897 @default.