Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312036142> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4312036142 abstract "It has become increasingly common to use machine learning techniques for discovering and designing novel materials. Big data enables machine learning techniques to make accurate predictions. However, experimental data are not abundant especially in the case of dielectric properties. In addition, the properties of polymers depend not only on the structure of monomers but also on the length of polymers, morphology, additives, and so on which further complicates the problem. Here, we review our latest research outcomes that are related to computational and data-driven dielectric materials design. First, we show how we were able to accurately predict the dielectric properties of gases using a small data set and further discover new molecules that can potentially outperform existing SF6 alternative gases. Then we show that by proper feature engineering it is possible to predict the thermal and electrical properties of polymer/inorganic filler composites. The main findings are as follows: (1) in line with our intuition, in general, accurate prediction of dielectric properties is difficult compared to the prediction of thermal or mechanical properties, (2) the process condition has an especially great impact on the electric properties of polymers, (3) with the knowledge of the underlying physics affecting the macroscopic properties, one can predict the dielectric properties of various materials with reasonable accuracy, (4) machine learning helps us understand the factors that control the dielectric properties, and (5) it can also be used to guide experiments or to provide testing standards." @default.
- W4312036142 created "2023-01-04" @default.
- W4312036142 creator A5054229279 @default.
- W4312036142 date "2022-10-30" @default.
- W4312036142 modified "2023-10-02" @default.
- W4312036142 title "Introducing materials informatics to dielectrics design" @default.
- W4312036142 cites W2004038646 @default.
- W4312036142 cites W2030636570 @default.
- W4312036142 cites W2338402873 @default.
- W4312036142 cites W2910772331 @default.
- W4312036142 cites W3097855402 @default.
- W4312036142 cites W3153899571 @default.
- W4312036142 cites W3166916871 @default.
- W4312036142 doi "https://doi.org/10.1109/ceidp55452.2022.9985380" @default.
- W4312036142 hasPublicationYear "2022" @default.
- W4312036142 type Work @default.
- W4312036142 citedByCount "0" @default.
- W4312036142 crossrefType "proceedings-article" @default.
- W4312036142 hasAuthorship W4312036142A5054229279 @default.
- W4312036142 hasConcept C111472728 @default.
- W4312036142 hasConcept C119857082 @default.
- W4312036142 hasConcept C132010649 @default.
- W4312036142 hasConcept C133386390 @default.
- W4312036142 hasConcept C138816342 @default.
- W4312036142 hasConcept C138885662 @default.
- W4312036142 hasConcept C145642194 @default.
- W4312036142 hasConcept C154945302 @default.
- W4312036142 hasConcept C158518442 @default.
- W4312036142 hasConcept C159110408 @default.
- W4312036142 hasConcept C159985019 @default.
- W4312036142 hasConcept C192562407 @default.
- W4312036142 hasConcept C41008148 @default.
- W4312036142 hasConcept C49040817 @default.
- W4312036142 hasConcept C521977710 @default.
- W4312036142 hasConcept C62085286 @default.
- W4312036142 hasConcept C71924100 @default.
- W4312036142 hasConceptScore W4312036142C111472728 @default.
- W4312036142 hasConceptScore W4312036142C119857082 @default.
- W4312036142 hasConceptScore W4312036142C132010649 @default.
- W4312036142 hasConceptScore W4312036142C133386390 @default.
- W4312036142 hasConceptScore W4312036142C138816342 @default.
- W4312036142 hasConceptScore W4312036142C138885662 @default.
- W4312036142 hasConceptScore W4312036142C145642194 @default.
- W4312036142 hasConceptScore W4312036142C154945302 @default.
- W4312036142 hasConceptScore W4312036142C158518442 @default.
- W4312036142 hasConceptScore W4312036142C159110408 @default.
- W4312036142 hasConceptScore W4312036142C159985019 @default.
- W4312036142 hasConceptScore W4312036142C192562407 @default.
- W4312036142 hasConceptScore W4312036142C41008148 @default.
- W4312036142 hasConceptScore W4312036142C49040817 @default.
- W4312036142 hasConceptScore W4312036142C521977710 @default.
- W4312036142 hasConceptScore W4312036142C62085286 @default.
- W4312036142 hasConceptScore W4312036142C71924100 @default.
- W4312036142 hasFunder F4320317030 @default.
- W4312036142 hasFunder F4320327425 @default.
- W4312036142 hasLocation W43120361421 @default.
- W4312036142 hasOpenAccess W4312036142 @default.
- W4312036142 hasPrimaryLocation W43120361421 @default.
- W4312036142 hasRelatedWork W1963934847 @default.
- W4312036142 hasRelatedWork W1994753809 @default.
- W4312036142 hasRelatedWork W2092872563 @default.
- W4312036142 hasRelatedWork W2374646600 @default.
- W4312036142 hasRelatedWork W2804544673 @default.
- W4312036142 hasRelatedWork W2863738027 @default.
- W4312036142 hasRelatedWork W2899084033 @default.
- W4312036142 hasRelatedWork W3092585306 @default.
- W4312036142 hasRelatedWork W4206493799 @default.
- W4312036142 hasRelatedWork W4253731651 @default.
- W4312036142 isParatext "false" @default.
- W4312036142 isRetracted "false" @default.
- W4312036142 workType "article" @default.