Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312059596> ?p ?o ?g. }
- W4312059596 endingPage "105734" @default.
- W4312059596 startingPage "105734" @default.
- W4312059596 abstract "Some traditional Indian art forms enjoy widespread popularity across the world. One of the most prominent among these is the Madhubani style. This art form’s rich heritage and beauty enthrall the connoisseurs and continue to inspire new designs catering to the changing tastes of prevalent fashion. Preservation of these traditional art forms is the need of the hour. Modern technological advances can be utilized with great advantage for this purpose. Since a database of Madhubani art forms was hitherto unavailable, an attempt is made in this work to create one from scratch. Five different classes of Madhubani art, i.e., Bharni, Godna, Kachni, Kohbar, and Tantrik, are identified, and the collected images are annotated with these classes. Classification of the art images is attempted using the handcrafted Local Binary Pattern (LBP) texture descriptors and state-of-the-art Convolutional Neural Networks (CNNs). The Transfer Learning approach with CNNs is employed to classify the designs. An attempt is made to obtain a better classification accuracy than the one provided by standard CNNs. Towards this end, the current work proposes a fusion of features extracted from several deep CNNs, decision fusion-based classification based on averaging prediction score (FAVG), and maximum vote score (FMAX). The proposed method’s performance is tested on our Madhubani art dataset and compared against several standard pre-trained CNNs available in the literature. The proposed approaches provide significantly higher classification accuracy for Madhubani art patterns, with decision fusion based on averaging prediction score (FAVG) approach being the best. The maximum accuracy, specificity, and error rate scores are 98.82%, 99.72%, and 1.18%, respectively. This is the first such attempt, and the excellent results motivate further work to develop content-based image retrieval tools and evolutionary design-based tools for automating the development of new designs. These endeavors are expected to go a long way in preserving precious art heritage and fostering its rapid growth in the world market. The dataset will be made publically available for further experimentation." @default.
- W4312059596 created "2023-01-04" @default.
- W4312059596 creator A5041107891 @default.
- W4312059596 creator A5050310356 @default.
- W4312059596 creator A5072764860 @default.
- W4312059596 date "2023-03-01" @default.
- W4312059596 modified "2023-09-24" @default.
- W4312059596 title "Madhubani Art Classification using transfer learning with deep feature fusion and decision fusion based techniques" @default.
- W4312059596 cites W1122180927 @default.
- W4312059596 cites W1793977698 @default.
- W4312059596 cites W1885185971 @default.
- W4312059596 cites W2019451007 @default.
- W4312059596 cites W2039051707 @default.
- W4312059596 cites W2091825929 @default.
- W4312059596 cites W2097117768 @default.
- W4312059596 cites W2100495367 @default.
- W4312059596 cites W2100502520 @default.
- W4312059596 cites W2106462739 @default.
- W4312059596 cites W2108240927 @default.
- W4312059596 cites W2112422763 @default.
- W4312059596 cites W2121111408 @default.
- W4312059596 cites W2122838776 @default.
- W4312059596 cites W2128907386 @default.
- W4312059596 cites W2151103935 @default.
- W4312059596 cites W2163352848 @default.
- W4312059596 cites W2165427702 @default.
- W4312059596 cites W2183341477 @default.
- W4312059596 cites W2194775991 @default.
- W4312059596 cites W2253709148 @default.
- W4312059596 cites W2278492618 @default.
- W4312059596 cites W2410256126 @default.
- W4312059596 cites W2475287302 @default.
- W4312059596 cites W2527321146 @default.
- W4312059596 cites W2527582473 @default.
- W4312059596 cites W2604452509 @default.
- W4312059596 cites W2755964124 @default.
- W4312059596 cites W2757455114 @default.
- W4312059596 cites W2771970740 @default.
- W4312059596 cites W2791266670 @default.
- W4312059596 cites W2897959996 @default.
- W4312059596 cites W2911801153 @default.
- W4312059596 cites W2911964244 @default.
- W4312059596 cites W2919115771 @default.
- W4312059596 cites W2962707453 @default.
- W4312059596 cites W2964350391 @default.
- W4312059596 cites W2969940675 @default.
- W4312059596 cites W2981431462 @default.
- W4312059596 cites W3002964220 @default.
- W4312059596 cites W3116340112 @default.
- W4312059596 cites W3133919270 @default.
- W4312059596 cites W3145527391 @default.
- W4312059596 cites W3199987705 @default.
- W4312059596 cites W4239510810 @default.
- W4312059596 doi "https://doi.org/10.1016/j.engappai.2022.105734" @default.
- W4312059596 hasPublicationYear "2023" @default.
- W4312059596 type Work @default.
- W4312059596 citedByCount "0" @default.
- W4312059596 crossrefType "journal-article" @default.
- W4312059596 hasAuthorship W4312059596A5041107891 @default.
- W4312059596 hasAuthorship W4312059596A5050310356 @default.
- W4312059596 hasAuthorship W4312059596A5072764860 @default.
- W4312059596 hasConcept C108583219 @default.
- W4312059596 hasConcept C115961682 @default.
- W4312059596 hasConcept C119857082 @default.
- W4312059596 hasConcept C138885662 @default.
- W4312059596 hasConcept C153180895 @default.
- W4312059596 hasConcept C154945302 @default.
- W4312059596 hasConcept C15744967 @default.
- W4312059596 hasConcept C2776401178 @default.
- W4312059596 hasConcept C2780586970 @default.
- W4312059596 hasConcept C41008148 @default.
- W4312059596 hasConcept C41895202 @default.
- W4312059596 hasConcept C53533937 @default.
- W4312059596 hasConcept C75294576 @default.
- W4312059596 hasConcept C77805123 @default.
- W4312059596 hasConcept C81363708 @default.
- W4312059596 hasConcept C87335442 @default.
- W4312059596 hasConceptScore W4312059596C108583219 @default.
- W4312059596 hasConceptScore W4312059596C115961682 @default.
- W4312059596 hasConceptScore W4312059596C119857082 @default.
- W4312059596 hasConceptScore W4312059596C138885662 @default.
- W4312059596 hasConceptScore W4312059596C153180895 @default.
- W4312059596 hasConceptScore W4312059596C154945302 @default.
- W4312059596 hasConceptScore W4312059596C15744967 @default.
- W4312059596 hasConceptScore W4312059596C2776401178 @default.
- W4312059596 hasConceptScore W4312059596C2780586970 @default.
- W4312059596 hasConceptScore W4312059596C41008148 @default.
- W4312059596 hasConceptScore W4312059596C41895202 @default.
- W4312059596 hasConceptScore W4312059596C53533937 @default.
- W4312059596 hasConceptScore W4312059596C75294576 @default.
- W4312059596 hasConceptScore W4312059596C77805123 @default.
- W4312059596 hasConceptScore W4312059596C81363708 @default.
- W4312059596 hasConceptScore W4312059596C87335442 @default.
- W4312059596 hasLocation W43120595961 @default.
- W4312059596 hasOpenAccess W4312059596 @default.
- W4312059596 hasPrimaryLocation W43120595961 @default.
- W4312059596 hasRelatedWork W2738221750 @default.
- W4312059596 hasRelatedWork W2760085659 @default.