Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312067536> ?p ?o ?g. }
- W4312067536 endingPage "205520762211432" @default.
- W4312067536 startingPage "205520762211432" @default.
- W4312067536 abstract "Background Artificial intelligence-enabled electrocardiogram has become a substitute tool for echocardiography in left ventricular ejection fraction estimation. However, the direct use of artificial intelligence-enabled electrocardiogram may be not trustable due to the uncertainty of the prediction. Objective The study aimed to establish an artificial intelligence-enabled electrocardiogram with a degree of confidence to identify left ventricular dysfunction. Methods The study collected 76,081 and 11,771 electrocardiograms from an academic medical center and a community hospital to establish and validate the deep learning model, respectively. The proposed deep learning model provided the point estimation of the actual ejection fraction and its standard deviation derived from the maximum probability density function of a normal distribution. The primary analysis focused on the accuracy of identifying patients with left ventricular dysfunction (ejection fraction ≤ 40%). Since the standard deviation was an uncertainty indicator in a normal distribution, we used it as a degree of confidence in the artificial intelligence-enabled electrocardiogram. We further explored the clinical application of estimated standard deviation and followed up on the new-onset left ventricular dysfunction in patients with initially normal ejection fraction. Results The area under receiver operating characteristic curves (AUC) of detecting left ventricular dysfunction were 0.9549 and 0.9365 in internal and external validation sets. After excluding the cases with a lower degree of confidence, the artificial intelligence-enabled electrocardiogram performed better in the remaining cases in internal (AUC = 0.9759) and external (AUC = 0.9653) validation sets. For the application of future left ventricular dysfunction risk stratification in patients with initially normal ejection fraction, a 4.57-fold risk of future left ventricular dysfunction when the artificial intelligence-enabled electrocardiogram is positive in the internal validation set. The hazard ratio was increased to 8.67 after excluding the cases with a lower degree of confidence. This trend was also validated in the external validation set. Conclusion The deep learning model with a degree of confidence can provide advanced improvements in identifying left ventricular dysfunction and serve as a decision support and management-guided screening tool for prognosis." @default.
- W4312067536 created "2023-01-04" @default.
- W4312067536 creator A5003675194 @default.
- W4312067536 creator A5015280328 @default.
- W4312067536 creator A5029187961 @default.
- W4312067536 creator A5036663139 @default.
- W4312067536 creator A5046116788 @default.
- W4312067536 creator A5055422288 @default.
- W4312067536 creator A5073923353 @default.
- W4312067536 creator A5081996384 @default.
- W4312067536 creator A5084207601 @default.
- W4312067536 date "2022-01-01" @default.
- W4312067536 modified "2023-10-17" @default.
- W4312067536 title "Artificial intelligence-enabled electrocardiogram screens low left ventricular ejection fraction with a degree of confidence" @default.
- W4312067536 cites W2000553014 @default.
- W4312067536 cites W2081284931 @default.
- W4312067536 cites W2092541823 @default.
- W4312067536 cites W2106078474 @default.
- W4312067536 cites W2107604758 @default.
- W4312067536 cites W2112725236 @default.
- W4312067536 cites W2129927679 @default.
- W4312067536 cites W2134919686 @default.
- W4312067536 cites W2151056321 @default.
- W4312067536 cites W2152865365 @default.
- W4312067536 cites W2219229044 @default.
- W4312067536 cites W2547239027 @default.
- W4312067536 cites W2609605008 @default.
- W4312067536 cites W2617320279 @default.
- W4312067536 cites W2770839096 @default.
- W4312067536 cites W2808368050 @default.
- W4312067536 cites W2901226889 @default.
- W4312067536 cites W2981991941 @default.
- W4312067536 cites W2994403349 @default.
- W4312067536 cites W3009117699 @default.
- W4312067536 cites W3045055338 @default.
- W4312067536 cites W3066799101 @default.
- W4312067536 cites W3118929067 @default.
- W4312067536 cites W3127657277 @default.
- W4312067536 cites W3152639892 @default.
- W4312067536 cites W3158436118 @default.
- W4312067536 cites W3159560336 @default.
- W4312067536 cites W3185036589 @default.
- W4312067536 cites W3193598686 @default.
- W4312067536 cites W3199206152 @default.
- W4312067536 cites W3207866969 @default.
- W4312067536 cites W3209140627 @default.
- W4312067536 cites W3216962276 @default.
- W4312067536 cites W4210841536 @default.
- W4312067536 cites W4220837239 @default.
- W4312067536 cites W4221130039 @default.
- W4312067536 cites W4238907867 @default.
- W4312067536 doi "https://doi.org/10.1177/20552076221143249" @default.
- W4312067536 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36532114" @default.
- W4312067536 hasPublicationYear "2022" @default.
- W4312067536 type Work @default.
- W4312067536 citedByCount "0" @default.
- W4312067536 crossrefType "journal-article" @default.
- W4312067536 hasAuthorship W4312067536A5003675194 @default.
- W4312067536 hasAuthorship W4312067536A5015280328 @default.
- W4312067536 hasAuthorship W4312067536A5029187961 @default.
- W4312067536 hasAuthorship W4312067536A5036663139 @default.
- W4312067536 hasAuthorship W4312067536A5046116788 @default.
- W4312067536 hasAuthorship W4312067536A5055422288 @default.
- W4312067536 hasAuthorship W4312067536A5073923353 @default.
- W4312067536 hasAuthorship W4312067536A5081996384 @default.
- W4312067536 hasAuthorship W4312067536A5084207601 @default.
- W4312067536 hasBestOaLocation W43120675363 @default.
- W4312067536 hasConcept C105795698 @default.
- W4312067536 hasConcept C119857082 @default.
- W4312067536 hasConcept C126322002 @default.
- W4312067536 hasConcept C154945302 @default.
- W4312067536 hasConcept C164705383 @default.
- W4312067536 hasConcept C22679943 @default.
- W4312067536 hasConcept C2778198053 @default.
- W4312067536 hasConcept C2993376042 @default.
- W4312067536 hasConcept C33923547 @default.
- W4312067536 hasConcept C41008148 @default.
- W4312067536 hasConcept C44249647 @default.
- W4312067536 hasConcept C58471807 @default.
- W4312067536 hasConcept C71924100 @default.
- W4312067536 hasConcept C78085059 @default.
- W4312067536 hasConceptScore W4312067536C105795698 @default.
- W4312067536 hasConceptScore W4312067536C119857082 @default.
- W4312067536 hasConceptScore W4312067536C126322002 @default.
- W4312067536 hasConceptScore W4312067536C154945302 @default.
- W4312067536 hasConceptScore W4312067536C164705383 @default.
- W4312067536 hasConceptScore W4312067536C22679943 @default.
- W4312067536 hasConceptScore W4312067536C2778198053 @default.
- W4312067536 hasConceptScore W4312067536C2993376042 @default.
- W4312067536 hasConceptScore W4312067536C33923547 @default.
- W4312067536 hasConceptScore W4312067536C41008148 @default.
- W4312067536 hasConceptScore W4312067536C44249647 @default.
- W4312067536 hasConceptScore W4312067536C58471807 @default.
- W4312067536 hasConceptScore W4312067536C71924100 @default.
- W4312067536 hasConceptScore W4312067536C78085059 @default.
- W4312067536 hasFunder F4320322795 @default.
- W4312067536 hasFunder F4320326425 @default.
- W4312067536 hasLocation W43120675361 @default.