Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312069941> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4312069941 endingPage "25" @default.
- W4312069941 startingPage "12" @default.
- W4312069941 abstract "Software quality prediction is the Machine Learning (ML) based technique in which ML models are trained using historical data. Output from these quality models can be used by software experts in the early phase of software development for improving the quality of software by controlling the various quality attributes like maintainability, reliability, security issues of software etc. In this study a systematic review of studies from 2005 to 2021 is performed. Studies that use ML techniques and source code metrics for Software Quality Prediction (SQP) are included for review. Study assesses the commonly used machine learning techniques and source code metric for SQP. Commonly used datasets, feature selection techniques and commonly used performance measures in software quality prediction are also assessed. In this paper 53 primary studies are selected for systematic review. Results of this study prove that Bayesian Learning (BL), Regression, Ensemble Learning (EL), Decision Tree (DT) and Support Vector Machine (SVM) are most commonly ML techniques used for quality prediction which comprises 58%, 52%, 41%, 32%, and 32% of the overall studies respectively. It is also assessed that NASA, PROMISE, Apache, Mozilla Firefox and Eclipse are the most commonly used datasets for training and testing the SQP models. LOC, CC, CBO, RFC, WMC, LCOM, DIT and NOC are among the most commonly used source code metrics in SQP. Based on the results from the selected studies it is concluded that ML techniques and source code metrics have the ability to improve the overall quality of the software." @default.
- W4312069941 created "2023-01-04" @default.
- W4312069941 creator A5035973893 @default.
- W4312069941 date "2022-12-20" @default.
- W4312069941 modified "2023-09-26" @default.
- W4312069941 title "SOFTWARE QUALITY PREDICTION USING MACHINE LEARNING TECHNIQUES AND SOURCE CODE METRICS: A REVIEW" @default.
- W4312069941 doi "https://doi.org/10.26483/ijarcs.v13i6.6918" @default.
- W4312069941 hasPublicationYear "2022" @default.
- W4312069941 type Work @default.
- W4312069941 citedByCount "0" @default.
- W4312069941 crossrefType "journal-article" @default.
- W4312069941 hasAuthorship W4312069941A5035973893 @default.
- W4312069941 hasBestOaLocation W43120699411 @default.
- W4312069941 hasConcept C105795698 @default.
- W4312069941 hasConcept C111472728 @default.
- W4312069941 hasConcept C115903868 @default.
- W4312069941 hasConcept C117447612 @default.
- W4312069941 hasConcept C119857082 @default.
- W4312069941 hasConcept C12267149 @default.
- W4312069941 hasConcept C124101348 @default.
- W4312069941 hasConcept C138885662 @default.
- W4312069941 hasConcept C154945302 @default.
- W4312069941 hasConcept C160713754 @default.
- W4312069941 hasConcept C162324750 @default.
- W4312069941 hasConcept C176217482 @default.
- W4312069941 hasConcept C199360897 @default.
- W4312069941 hasConcept C21547014 @default.
- W4312069941 hasConcept C2777904410 @default.
- W4312069941 hasConcept C2779530757 @default.
- W4312069941 hasConcept C33923547 @default.
- W4312069941 hasConcept C41008148 @default.
- W4312069941 hasConcept C43126263 @default.
- W4312069941 hasConcept C48002344 @default.
- W4312069941 hasConcept C529173508 @default.
- W4312069941 hasConcept C82214349 @default.
- W4312069941 hasConceptScore W4312069941C105795698 @default.
- W4312069941 hasConceptScore W4312069941C111472728 @default.
- W4312069941 hasConceptScore W4312069941C115903868 @default.
- W4312069941 hasConceptScore W4312069941C117447612 @default.
- W4312069941 hasConceptScore W4312069941C119857082 @default.
- W4312069941 hasConceptScore W4312069941C12267149 @default.
- W4312069941 hasConceptScore W4312069941C124101348 @default.
- W4312069941 hasConceptScore W4312069941C138885662 @default.
- W4312069941 hasConceptScore W4312069941C154945302 @default.
- W4312069941 hasConceptScore W4312069941C160713754 @default.
- W4312069941 hasConceptScore W4312069941C162324750 @default.
- W4312069941 hasConceptScore W4312069941C176217482 @default.
- W4312069941 hasConceptScore W4312069941C199360897 @default.
- W4312069941 hasConceptScore W4312069941C21547014 @default.
- W4312069941 hasConceptScore W4312069941C2777904410 @default.
- W4312069941 hasConceptScore W4312069941C2779530757 @default.
- W4312069941 hasConceptScore W4312069941C33923547 @default.
- W4312069941 hasConceptScore W4312069941C41008148 @default.
- W4312069941 hasConceptScore W4312069941C43126263 @default.
- W4312069941 hasConceptScore W4312069941C48002344 @default.
- W4312069941 hasConceptScore W4312069941C529173508 @default.
- W4312069941 hasConceptScore W4312069941C82214349 @default.
- W4312069941 hasIssue "06" @default.
- W4312069941 hasLocation W43120699411 @default.
- W4312069941 hasOpenAccess W4312069941 @default.
- W4312069941 hasPrimaryLocation W43120699411 @default.
- W4312069941 hasRelatedWork W111659938 @default.
- W4312069941 hasRelatedWork W2074427387 @default.
- W4312069941 hasRelatedWork W2373393397 @default.
- W4312069941 hasRelatedWork W2564547244 @default.
- W4312069941 hasRelatedWork W2969111742 @default.
- W4312069941 hasRelatedWork W3108840709 @default.
- W4312069941 hasRelatedWork W3196972978 @default.
- W4312069941 hasRelatedWork W4245739948 @default.
- W4312069941 hasRelatedWork W4385245644 @default.
- W4312069941 hasRelatedWork W2575254125 @default.
- W4312069941 hasVolume "13" @default.
- W4312069941 isParatext "false" @default.
- W4312069941 isRetracted "false" @default.
- W4312069941 workType "article" @default.