Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312070428> ?p ?o ?g. }
- W4312070428 endingPage "44" @default.
- W4312070428 startingPage "44" @default.
- W4312070428 abstract "During recent years, hyperspectral imaging technologies have been widely applied in agriculture to evaluate complex plant physiological traits such as leaf moisture content, nutrient level, and disease stress. A critical component of this technique is white referencing used to remove the effect of non-uniform lighting intensity in different wavelengths on raw hyperspectral images. However, a flat white tile cannot accurately reflect the lighting intensity variance on plant leaves, since the leaf geometry (e.g., tilt angles) and its interaction with the illumination severely impact plant reflectance spectra and vegetation indices such as the normalized difference vegetation index (NDVI). In this research, the impacts of leaf angles on plant reflectance spectra were summarized, and an improved image calibration model using the fusion of leaf hyperspectral images and 3D point clouds was built. Corn and soybean leaf samples were imaged at different tilt angles and orientations using an indoor desktop hyperspectral imaging system and analyzed for differences in the NDVI values. The results showed that the leaf's NDVI largely changed with angles. The changing trends with angles differed between the two species. Using measurements of leaf tilt angle and orientation obtained from the 3D point cloud data taken simultaneously with the hyperspectral images, a support vector regression (SVR) model was successfully developed to calibrate the NDVI values of pixels at different angles on a leaf to a same standard as if the leaf was laid flat on a horizontal surface. The R-squared values between the measured and predicted leaf angle impacts were 0.76 and 0.94 for corn and soybean, respectively. This method has a potential to be used in any general plant imaging systems to improve the phenotyping quality." @default.
- W4312070428 created "2023-01-04" @default.
- W4312070428 creator A5008597305 @default.
- W4312070428 creator A5012704417 @default.
- W4312070428 creator A5052104716 @default.
- W4312070428 creator A5059571260 @default.
- W4312070428 creator A5071649364 @default.
- W4312070428 date "2022-12-21" @default.
- W4312070428 modified "2023-09-26" @default.
- W4312070428 title "Elimination of Leaf Angle Impacts on Plant Reflectance Spectra Using Fusion of Hyperspectral Images and 3D Point Clouds" @default.
- W4312070428 cites W1813535063 @default.
- W4312070428 cites W1976713456 @default.
- W4312070428 cites W1985734029 @default.
- W4312070428 cites W1992483596 @default.
- W4312070428 cites W1998686312 @default.
- W4312070428 cites W2020436359 @default.
- W4312070428 cites W2020860387 @default.
- W4312070428 cites W2021241730 @default.
- W4312070428 cites W2022914549 @default.
- W4312070428 cites W2025238960 @default.
- W4312070428 cites W2029575047 @default.
- W4312070428 cites W2047058045 @default.
- W4312070428 cites W2059523177 @default.
- W4312070428 cites W2112740731 @default.
- W4312070428 cites W2121025745 @default.
- W4312070428 cites W2127682127 @default.
- W4312070428 cites W2151896708 @default.
- W4312070428 cites W2158994553 @default.
- W4312070428 cites W2198825651 @default.
- W4312070428 cites W2257133239 @default.
- W4312070428 cites W2288553003 @default.
- W4312070428 cites W2473052039 @default.
- W4312070428 cites W2562894703 @default.
- W4312070428 cites W2581010393 @default.
- W4312070428 cites W2594738716 @default.
- W4312070428 cites W2615300133 @default.
- W4312070428 cites W2756321087 @default.
- W4312070428 cites W2790739169 @default.
- W4312070428 cites W2888623692 @default.
- W4312070428 cites W2896851400 @default.
- W4312070428 cites W3010571716 @default.
- W4312070428 cites W3085020035 @default.
- W4312070428 cites W3158349302 @default.
- W4312070428 cites W3174896073 @default.
- W4312070428 doi "https://doi.org/10.3390/s23010044" @default.
- W4312070428 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36616642" @default.
- W4312070428 hasPublicationYear "2022" @default.
- W4312070428 type Work @default.
- W4312070428 citedByCount "3" @default.
- W4312070428 countsByYear W43120704282023 @default.
- W4312070428 crossrefType "journal-article" @default.
- W4312070428 hasAuthorship W4312070428A5008597305 @default.
- W4312070428 hasAuthorship W4312070428A5012704417 @default.
- W4312070428 hasAuthorship W4312070428A5052104716 @default.
- W4312070428 hasAuthorship W4312070428A5059571260 @default.
- W4312070428 hasAuthorship W4312070428A5071649364 @default.
- W4312070428 hasBestOaLocation W43120704281 @default.
- W4312070428 hasConcept C105795698 @default.
- W4312070428 hasConcept C118518473 @default.
- W4312070428 hasConcept C120217122 @default.
- W4312070428 hasConcept C131979681 @default.
- W4312070428 hasConcept C142724271 @default.
- W4312070428 hasConcept C1549246 @default.
- W4312070428 hasConcept C154945302 @default.
- W4312070428 hasConcept C159078339 @default.
- W4312070428 hasConcept C160633673 @default.
- W4312070428 hasConcept C16345878 @default.
- W4312070428 hasConcept C165838908 @default.
- W4312070428 hasConcept C18903297 @default.
- W4312070428 hasConcept C205649164 @default.
- W4312070428 hasConcept C2524010 @default.
- W4312070428 hasConcept C25989453 @default.
- W4312070428 hasConcept C2776133958 @default.
- W4312070428 hasConcept C2779844322 @default.
- W4312070428 hasConcept C33923547 @default.
- W4312070428 hasConcept C39432304 @default.
- W4312070428 hasConcept C41008148 @default.
- W4312070428 hasConcept C62649853 @default.
- W4312070428 hasConcept C6557445 @default.
- W4312070428 hasConcept C71924100 @default.
- W4312070428 hasConcept C86803240 @default.
- W4312070428 hasConceptScore W4312070428C105795698 @default.
- W4312070428 hasConceptScore W4312070428C118518473 @default.
- W4312070428 hasConceptScore W4312070428C120217122 @default.
- W4312070428 hasConceptScore W4312070428C131979681 @default.
- W4312070428 hasConceptScore W4312070428C142724271 @default.
- W4312070428 hasConceptScore W4312070428C1549246 @default.
- W4312070428 hasConceptScore W4312070428C154945302 @default.
- W4312070428 hasConceptScore W4312070428C159078339 @default.
- W4312070428 hasConceptScore W4312070428C160633673 @default.
- W4312070428 hasConceptScore W4312070428C16345878 @default.
- W4312070428 hasConceptScore W4312070428C165838908 @default.
- W4312070428 hasConceptScore W4312070428C18903297 @default.
- W4312070428 hasConceptScore W4312070428C205649164 @default.
- W4312070428 hasConceptScore W4312070428C2524010 @default.
- W4312070428 hasConceptScore W4312070428C25989453 @default.
- W4312070428 hasConceptScore W4312070428C2776133958 @default.
- W4312070428 hasConceptScore W4312070428C2779844322 @default.