Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312070592> ?p ?o ?g. }
- W4312070592 endingPage "1" @default.
- W4312070592 startingPage "1" @default.
- W4312070592 abstract "Historically, wetlands have not been given much attention in terms of their value due to the general public being unaware. Nevertheless, wetlands are still threatened by many anthropogenic activities, in addition to ongoing climate change. With these recent developments, water level prediction of wetlands has become an important task in order to identify potential environmental damage and for the sustainable management of wetlands. Therefore, this study identified a reliable neural network model by which to predict wetland water levels over the Colombo flood detention area, Sri Lanka. This is the first study conducted using machine learning techniques in wetland water level predictions in Sri Lanka. The model was developed with independent meteorological variables, including rainfall, evaporation, temperature, relative humidity, and wind speed. The water levels measurements of previous years were used as dependent variables, and the analysis was based on a seasonal timescale. Two neural network training algorithms, the Levenberg Marquardt algorithm (LM) and the Scaled Conjugate algorithm (SG), were used to model the nonlinear relationship, while the Mean Squared Error (MSE) and Coefficient of Correlation (CC) were used as the performance indices by which to understand the robustness of the model. In addition, uncertainty analysis was carried out using d-factor simulations. The performance indicators showed that the LM algorithm produced better results by which to model the wetland water level ahead of the SC algorithm, with a mean squared error of 0.0002 and a coefficient of correlation of 0.99. In addition, the computational efficiencies were excellent in the LM algorithm compared to the SC algorithm in terms of the prediction of water levels. LM showcased 3–5 epochs, whereas SC showcased 34–50 epochs of computational efficiencies for all four seasonal predictions. However, the d-factor showcased that the results were not within the cluster of uncertainty. Therefore, the overall results suggest that the Artificial Neural Network can be successfully used to predict the wetland water levels, which is immensely important in the management and conservation of the wetlands." @default.
- W4312070592 created "2023-01-04" @default.
- W4312070592 creator A5020258073 @default.
- W4312070592 creator A5027658472 @default.
- W4312070592 creator A5065987103 @default.
- W4312070592 creator A5068803835 @default.
- W4312070592 date "2022-12-21" @default.
- W4312070592 modified "2023-09-30" @default.
- W4312070592 title "Wetland Water Level Prediction Using Artificial Neural Networks—A Case Study in the Colombo Flood Detention Area, Sri Lanka" @default.
- W4312070592 cites W1977432038 @default.
- W4312070592 cites W1983625179 @default.
- W4312070592 cites W1998893231 @default.
- W4312070592 cites W2009436600 @default.
- W4312070592 cites W2037072914 @default.
- W4312070592 cites W2080892445 @default.
- W4312070592 cites W2101073184 @default.
- W4312070592 cites W2117934704 @default.
- W4312070592 cites W2118023920 @default.
- W4312070592 cites W2130167285 @default.
- W4312070592 cites W2136820158 @default.
- W4312070592 cites W2345729554 @default.
- W4312070592 cites W2576223583 @default.
- W4312070592 cites W2583954390 @default.
- W4312070592 cites W2762476359 @default.
- W4312070592 cites W2792379120 @default.
- W4312070592 cites W2793757297 @default.
- W4312070592 cites W2940972367 @default.
- W4312070592 cites W2945965465 @default.
- W4312070592 cites W2954936648 @default.
- W4312070592 cites W2959295378 @default.
- W4312070592 cites W2991180354 @default.
- W4312070592 cites W3001697928 @default.
- W4312070592 cites W3010986668 @default.
- W4312070592 cites W3042554268 @default.
- W4312070592 cites W3048644195 @default.
- W4312070592 cites W3136555658 @default.
- W4312070592 cites W3177484865 @default.
- W4312070592 cites W3190975590 @default.
- W4312070592 cites W4200181878 @default.
- W4312070592 cites W4292693860 @default.
- W4312070592 doi "https://doi.org/10.3390/cli11010001" @default.
- W4312070592 hasPublicationYear "2022" @default.
- W4312070592 type Work @default.
- W4312070592 citedByCount "2" @default.
- W4312070592 countsByYear W43120705922023 @default.
- W4312070592 crossrefType "journal-article" @default.
- W4312070592 hasAuthorship W4312070592A5020258073 @default.
- W4312070592 hasAuthorship W4312070592A5027658472 @default.
- W4312070592 hasAuthorship W4312070592A5065987103 @default.
- W4312070592 hasAuthorship W4312070592A5068803835 @default.
- W4312070592 hasBestOaLocation W43120705921 @default.
- W4312070592 hasConcept C104317684 @default.
- W4312070592 hasConcept C105795698 @default.
- W4312070592 hasConcept C119857082 @default.
- W4312070592 hasConcept C127413603 @default.
- W4312070592 hasConcept C1284942 @default.
- W4312070592 hasConcept C139945424 @default.
- W4312070592 hasConcept C153294291 @default.
- W4312070592 hasConcept C161067210 @default.
- W4312070592 hasConcept C166957645 @default.
- W4312070592 hasConcept C185592680 @default.
- W4312070592 hasConcept C187320778 @default.
- W4312070592 hasConcept C18903297 @default.
- W4312070592 hasConcept C205649164 @default.
- W4312070592 hasConcept C2779357621 @default.
- W4312070592 hasConcept C2780092901 @default.
- W4312070592 hasConcept C3017649214 @default.
- W4312070592 hasConcept C33923547 @default.
- W4312070592 hasConcept C39432304 @default.
- W4312070592 hasConcept C41008148 @default.
- W4312070592 hasConcept C50644808 @default.
- W4312070592 hasConcept C55493867 @default.
- W4312070592 hasConcept C58640448 @default.
- W4312070592 hasConcept C63479239 @default.
- W4312070592 hasConcept C67715294 @default.
- W4312070592 hasConcept C74256435 @default.
- W4312070592 hasConcept C76886044 @default.
- W4312070592 hasConcept C86803240 @default.
- W4312070592 hasConcept C91375879 @default.
- W4312070592 hasConceptScore W4312070592C104317684 @default.
- W4312070592 hasConceptScore W4312070592C105795698 @default.
- W4312070592 hasConceptScore W4312070592C119857082 @default.
- W4312070592 hasConceptScore W4312070592C127413603 @default.
- W4312070592 hasConceptScore W4312070592C1284942 @default.
- W4312070592 hasConceptScore W4312070592C139945424 @default.
- W4312070592 hasConceptScore W4312070592C153294291 @default.
- W4312070592 hasConceptScore W4312070592C161067210 @default.
- W4312070592 hasConceptScore W4312070592C166957645 @default.
- W4312070592 hasConceptScore W4312070592C185592680 @default.
- W4312070592 hasConceptScore W4312070592C187320778 @default.
- W4312070592 hasConceptScore W4312070592C18903297 @default.
- W4312070592 hasConceptScore W4312070592C205649164 @default.
- W4312070592 hasConceptScore W4312070592C2779357621 @default.
- W4312070592 hasConceptScore W4312070592C2780092901 @default.
- W4312070592 hasConceptScore W4312070592C3017649214 @default.
- W4312070592 hasConceptScore W4312070592C33923547 @default.
- W4312070592 hasConceptScore W4312070592C39432304 @default.
- W4312070592 hasConceptScore W4312070592C41008148 @default.