Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312071198> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4312071198 endingPage "14" @default.
- W4312071198 startingPage "14" @default.
- W4312071198 abstract "One of the most common oncologies analyzed among people worldwide is lung malignancy. Early detection of lung malignancy helps find a suitable treatment for saving human lives. Due to its high resolution, greater transparency, and low noise and distortions, Computed Tomography (CT) images are most commonly used for processing. In this context, this research work mainly focused on the multifaceted nature of lung cancer diagnosis, a quintessential, fascinating, and risky subject of oncology. The input used here has been nano-image, enhanced with a Gabor filter and modified color-based histogram equalization. Then, the image of lung cancer was segmented by using the Guaranteed Convergence Particle Swarm Optimization (GCPSO) algorithm. A graphical user interface nano-measuring tool was designed to classify the tumor region. The Bag of Visual Words (BoVW) and a Convolutional Recurrent Neural Network (CRNN) were employed for image classification and feature extraction processes. In terms of findings, we achieved the average precision of 96.5%, accuracy of 99.35%, sensitivity of 97%, specificity of 99% and F1 score of 95.5%. With the proposed solution, the overall time required for the segmentation of images was much smaller than the existing solutions. It is also remarkable that biocompatible-based nanotechnology was developed to distinguish the malignancy region on a nanometer scale and has to be evaluated automatically. That novel method succeeds in producing a proficient, robust, and precise segmentation of lesions in nano-CT images." @default.
- W4312071198 created "2023-01-04" @default.
- W4312071198 creator A5013158228 @default.
- W4312071198 creator A5022439777 @default.
- W4312071198 creator A5087542455 @default.
- W4312071198 creator A5087732804 @default.
- W4312071198 date "2022-12-21" @default.
- W4312071198 modified "2023-09-26" @default.
- W4312071198 title "Deep Learning-Based BoVW–CRNN Model for Lung Tumor Detection in Nano-Segmented CT Images" @default.
- W4312071198 cites W130099911 @default.
- W4312071198 cites W2011590033 @default.
- W4312071198 cites W2023522838 @default.
- W4312071198 cites W2050383414 @default.
- W4312071198 cites W2071105408 @default.
- W4312071198 cites W2117530999 @default.
- W4312071198 cites W2122095120 @default.
- W4312071198 cites W2136177244 @default.
- W4312071198 cites W2158805220 @default.
- W4312071198 cites W2280957887 @default.
- W4312071198 cites W2319354435 @default.
- W4312071198 cites W2490901342 @default.
- W4312071198 cites W2581501088 @default.
- W4312071198 cites W2582142516 @default.
- W4312071198 cites W2586435500 @default.
- W4312071198 cites W2613279463 @default.
- W4312071198 cites W2624881194 @default.
- W4312071198 cites W2735373406 @default.
- W4312071198 cites W2767105386 @default.
- W4312071198 cites W2774479194 @default.
- W4312071198 cites W2802237180 @default.
- W4312071198 cites W2803187109 @default.
- W4312071198 cites W2888621818 @default.
- W4312071198 cites W2889646458 @default.
- W4312071198 cites W2910163276 @default.
- W4312071198 cites W2916099831 @default.
- W4312071198 cites W3017475833 @default.
- W4312071198 cites W3046874697 @default.
- W4312071198 cites W4232056169 @default.
- W4312071198 doi "https://doi.org/10.3390/electronics12010014" @default.
- W4312071198 hasPublicationYear "2022" @default.
- W4312071198 type Work @default.
- W4312071198 citedByCount "3" @default.
- W4312071198 countsByYear W43120711982023 @default.
- W4312071198 crossrefType "journal-article" @default.
- W4312071198 hasAuthorship W4312071198A5013158228 @default.
- W4312071198 hasAuthorship W4312071198A5022439777 @default.
- W4312071198 hasAuthorship W4312071198A5087542455 @default.
- W4312071198 hasAuthorship W4312071198A5087732804 @default.
- W4312071198 hasBestOaLocation W43120711981 @default.
- W4312071198 hasConcept C124504099 @default.
- W4312071198 hasConcept C142724271 @default.
- W4312071198 hasConcept C151730666 @default.
- W4312071198 hasConcept C153180895 @default.
- W4312071198 hasConcept C154945302 @default.
- W4312071198 hasConcept C2776256026 @default.
- W4312071198 hasConcept C2777522853 @default.
- W4312071198 hasConcept C2779343474 @default.
- W4312071198 hasConcept C31972630 @default.
- W4312071198 hasConcept C41008148 @default.
- W4312071198 hasConcept C71924100 @default.
- W4312071198 hasConcept C81363708 @default.
- W4312071198 hasConcept C86803240 @default.
- W4312071198 hasConcept C89600930 @default.
- W4312071198 hasConceptScore W4312071198C124504099 @default.
- W4312071198 hasConceptScore W4312071198C142724271 @default.
- W4312071198 hasConceptScore W4312071198C151730666 @default.
- W4312071198 hasConceptScore W4312071198C153180895 @default.
- W4312071198 hasConceptScore W4312071198C154945302 @default.
- W4312071198 hasConceptScore W4312071198C2776256026 @default.
- W4312071198 hasConceptScore W4312071198C2777522853 @default.
- W4312071198 hasConceptScore W4312071198C2779343474 @default.
- W4312071198 hasConceptScore W4312071198C31972630 @default.
- W4312071198 hasConceptScore W4312071198C41008148 @default.
- W4312071198 hasConceptScore W4312071198C71924100 @default.
- W4312071198 hasConceptScore W4312071198C81363708 @default.
- W4312071198 hasConceptScore W4312071198C86803240 @default.
- W4312071198 hasConceptScore W4312071198C89600930 @default.
- W4312071198 hasIssue "1" @default.
- W4312071198 hasLocation W43120711981 @default.
- W4312071198 hasOpenAccess W4312071198 @default.
- W4312071198 hasPrimaryLocation W43120711981 @default.
- W4312071198 hasRelatedWork W1669643531 @default.
- W4312071198 hasRelatedWork W1982826852 @default.
- W4312071198 hasRelatedWork W2005437358 @default.
- W4312071198 hasRelatedWork W2008656436 @default.
- W4312071198 hasRelatedWork W2023558673 @default.
- W4312071198 hasRelatedWork W2110230079 @default.
- W4312071198 hasRelatedWork W2134924024 @default.
- W4312071198 hasRelatedWork W2517104666 @default.
- W4312071198 hasRelatedWork W2613186388 @default.
- W4312071198 hasRelatedWork W1967061043 @default.
- W4312071198 hasVolume "12" @default.
- W4312071198 isParatext "false" @default.
- W4312071198 isRetracted "false" @default.
- W4312071198 workType "article" @default.