Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312073707> ?p ?o ?g. }
- W4312073707 endingPage "33" @default.
- W4312073707 startingPage "33" @default.
- W4312073707 abstract "Image analysis using machine learning (ML) algorithms could provide a measure of animal welfare by measuring comfort behaviours and undesired behaviours. Using a PLF technique based on images, the present study aimed to test a machine learning tool for measuring the number of hens on the ground and identifying the number of dust-bathing hens in an experimental aviary. In addition, two YOLO (You Only Look Once) models were compared. YOLOv4-tiny needed about 4.26 h to train for 6000 epochs, compared to about 23.2 h for the full models of YOLOv4. In validation, the performance of the two models in terms of precision, recall, harmonic mean of precision and recall, and mean average precision (mAP) did not differ, while the value of frame per second was lower in YOLOv4 compared to the tiny version (31.35 vs. 208.5). The mAP stands at about 94% for the classification of hens on the floor, while the classification of dust-bathing hens was poor (28.2% in the YOLOv4-tiny compared to 31.6% in YOLOv4). In conclusion, ML successfully identified laying hens on the floor, whereas other PLF tools must be tested for the classification of dust-bathing hens." @default.
- W4312073707 created "2023-01-04" @default.
- W4312073707 creator A5006442404 @default.
- W4312073707 creator A5014726684 @default.
- W4312073707 creator A5038405130 @default.
- W4312073707 creator A5049734115 @default.
- W4312073707 creator A5057977988 @default.
- W4312073707 creator A5058297286 @default.
- W4312073707 creator A5061294002 @default.
- W4312073707 creator A5075902256 @default.
- W4312073707 creator A5076694614 @default.
- W4312073707 date "2022-12-21" @default.
- W4312073707 modified "2023-10-12" @default.
- W4312073707 title "Measuring Comfort Behaviours in Laying Hens Using Deep-Learning Tools" @default.
- W4312073707 cites W1975670494 @default.
- W4312073707 cites W1987869189 @default.
- W4312073707 cites W2025183033 @default.
- W4312073707 cites W2064293752 @default.
- W4312073707 cites W2123402141 @default.
- W4312073707 cites W2275147847 @default.
- W4312073707 cites W2570343428 @default.
- W4312073707 cites W2584559157 @default.
- W4312073707 cites W2765497040 @default.
- W4312073707 cites W2774579163 @default.
- W4312073707 cites W2777972142 @default.
- W4312073707 cites W2781927642 @default.
- W4312073707 cites W2783771431 @default.
- W4312073707 cites W2790979755 @default.
- W4312073707 cites W2819761517 @default.
- W4312073707 cites W2884367402 @default.
- W4312073707 cites W2885770726 @default.
- W4312073707 cites W2902768594 @default.
- W4312073707 cites W2912149700 @default.
- W4312073707 cites W2945051190 @default.
- W4312073707 cites W2963037989 @default.
- W4312073707 cites W2970908021 @default.
- W4312073707 cites W2977793032 @default.
- W4312073707 cites W2989702950 @default.
- W4312073707 cites W2990688248 @default.
- W4312073707 cites W2994950850 @default.
- W4312073707 cites W3036157656 @default.
- W4312073707 cites W3041906494 @default.
- W4312073707 cites W3044654760 @default.
- W4312073707 cites W3104518269 @default.
- W4312073707 cites W3125376821 @default.
- W4312073707 cites W3132342445 @default.
- W4312073707 cites W4200305395 @default.
- W4312073707 cites W4210598935 @default.
- W4312073707 cites W4210741358 @default.
- W4312073707 cites W4281629943 @default.
- W4312073707 cites W4289450797 @default.
- W4312073707 cites W4295068921 @default.
- W4312073707 cites W4312798463 @default.
- W4312073707 cites W3129370005 @default.
- W4312073707 doi "https://doi.org/10.3390/ani13010033" @default.
- W4312073707 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36611643" @default.
- W4312073707 hasPublicationYear "2022" @default.
- W4312073707 type Work @default.
- W4312073707 citedByCount "3" @default.
- W4312073707 countsByYear W43120737072023 @default.
- W4312073707 crossrefType "journal-article" @default.
- W4312073707 hasAuthorship W4312073707A5006442404 @default.
- W4312073707 hasAuthorship W4312073707A5014726684 @default.
- W4312073707 hasAuthorship W4312073707A5038405130 @default.
- W4312073707 hasAuthorship W4312073707A5049734115 @default.
- W4312073707 hasAuthorship W4312073707A5057977988 @default.
- W4312073707 hasAuthorship W4312073707A5058297286 @default.
- W4312073707 hasAuthorship W4312073707A5061294002 @default.
- W4312073707 hasAuthorship W4312073707A5075902256 @default.
- W4312073707 hasAuthorship W4312073707A5076694614 @default.
- W4312073707 hasBestOaLocation W43120737071 @default.
- W4312073707 hasConcept C105795698 @default.
- W4312073707 hasConcept C108583219 @default.
- W4312073707 hasConcept C126042441 @default.
- W4312073707 hasConcept C127413603 @default.
- W4312073707 hasConcept C153180895 @default.
- W4312073707 hasConcept C154945302 @default.
- W4312073707 hasConcept C166957645 @default.
- W4312073707 hasConcept C205649164 @default.
- W4312073707 hasConcept C2778826615 @default.
- W4312073707 hasConcept C2780812243 @default.
- W4312073707 hasConcept C33923547 @default.
- W4312073707 hasConcept C41008148 @default.
- W4312073707 hasConcept C66938386 @default.
- W4312073707 hasConcept C76155785 @default.
- W4312073707 hasConceptScore W4312073707C105795698 @default.
- W4312073707 hasConceptScore W4312073707C108583219 @default.
- W4312073707 hasConceptScore W4312073707C126042441 @default.
- W4312073707 hasConceptScore W4312073707C127413603 @default.
- W4312073707 hasConceptScore W4312073707C153180895 @default.
- W4312073707 hasConceptScore W4312073707C154945302 @default.
- W4312073707 hasConceptScore W4312073707C166957645 @default.
- W4312073707 hasConceptScore W4312073707C205649164 @default.
- W4312073707 hasConceptScore W4312073707C2778826615 @default.
- W4312073707 hasConceptScore W4312073707C2780812243 @default.
- W4312073707 hasConceptScore W4312073707C33923547 @default.
- W4312073707 hasConceptScore W4312073707C41008148 @default.
- W4312073707 hasConceptScore W4312073707C66938386 @default.