Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312078896> ?p ?o ?g. }
- W4312078896 endingPage "5" @default.
- W4312078896 startingPage "5" @default.
- W4312078896 abstract "(1) Background: The success of physiotherapy depends on the regular and correct unsupervised performance of movement exercises. A system that automatically evaluates these exercises could increase effectiveness and reduce risk of injury in home based therapy. Previous approaches in this area rarely rely on deep learning methods and do not yet fully use their potential. (2) Methods: Using a measurement system consisting of 17 inertial measurement units, a dataset of four Functional Movement Screening exercises is recorded. Exercise execution is evaluated by physiotherapists using the Functional Movement Screening criteria. This dataset is used to train a neural network that assigns the correct Functional Movement Screening score to an exercise repetition. We use an architecture consisting of convolutional, long-short-term memory and dense layers. Based on this framework, we apply various methods to optimize the performance of the network. For the optimization, we perform an extensive hyperparameter optimization. In addition, we are comparing different convolutional neural network structures that have been specifically adapted for use with inertial measurement data. To test the developed approach, it is trained on the data from different Functional Movement Screening exercises and the performance is compared on unknown data from known and unknown subjects. (3) Results: The evaluation shows that the presented approach is able to classify unknown repetitions correctly. However, the trained network is yet unable to achieve consistent performance on the data of previously unknown subjects. Additionally, it can be seen that the performance of the network differs depending on the exercise it is trained for. (4) Conclusions: The present work shows that the presented deep learning approach is capable of performing complex motion analytic tasks based on inertial measurement unit data. The observed performance degradation on the data of unknown subjects is comparable to publications of other research groups that relied on classical machine learning methods. However, the presented approach can rely on transfer learning methods, which allow to retrain the classifier by means of a few repetitions of an unknown subject. Transfer learning methods could also be used to compensate for performance differences between exercises." @default.
- W4312078896 created "2023-01-04" @default.
- W4312078896 creator A5019230749 @default.
- W4312078896 creator A5059476383 @default.
- W4312078896 date "2022-12-20" @default.
- W4312078896 modified "2023-09-30" @default.
- W4312078896 title "Automatic Assessment of Functional Movement Screening Exercises with Deep Learning Architectures" @default.
- W4312078896 cites W1649781502 @default.
- W4312078896 cites W1937793154 @default.
- W4312078896 cites W1994349244 @default.
- W4312078896 cites W2002097807 @default.
- W4312078896 cites W2021289856 @default.
- W4312078896 cites W2024957998 @default.
- W4312078896 cites W2075468483 @default.
- W4312078896 cites W2164665811 @default.
- W4312078896 cites W2270470215 @default.
- W4312078896 cites W2313131159 @default.
- W4312078896 cites W2344318667 @default.
- W4312078896 cites W2538633981 @default.
- W4312078896 cites W2543339411 @default.
- W4312078896 cites W2553098005 @default.
- W4312078896 cites W2614557479 @default.
- W4312078896 cites W2614559277 @default.
- W4312078896 cites W2751594996 @default.
- W4312078896 cites W2770106921 @default.
- W4312078896 cites W2792932721 @default.
- W4312078896 cites W2795752438 @default.
- W4312078896 cites W2803675191 @default.
- W4312078896 cites W2919115771 @default.
- W4312078896 cites W2919910909 @default.
- W4312078896 cites W2995516325 @default.
- W4312078896 cites W2999039416 @default.
- W4312078896 cites W3045004532 @default.
- W4312078896 cites W3117415232 @default.
- W4312078896 cites W3140874910 @default.
- W4312078896 cites W3159002063 @default.
- W4312078896 cites W3196179611 @default.
- W4312078896 cites W3199567699 @default.
- W4312078896 cites W3204727593 @default.
- W4312078896 cites W4303474672 @default.
- W4312078896 doi "https://doi.org/10.3390/s23010005" @default.
- W4312078896 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36616604" @default.
- W4312078896 hasPublicationYear "2022" @default.
- W4312078896 type Work @default.
- W4312078896 citedByCount "2" @default.
- W4312078896 countsByYear W43120788962023 @default.
- W4312078896 crossrefType "journal-article" @default.
- W4312078896 hasAuthorship W4312078896A5019230749 @default.
- W4312078896 hasAuthorship W4312078896A5059476383 @default.
- W4312078896 hasBestOaLocation W43120788961 @default.
- W4312078896 hasConcept C107038049 @default.
- W4312078896 hasConcept C108583219 @default.
- W4312078896 hasConcept C118552586 @default.
- W4312078896 hasConcept C119857082 @default.
- W4312078896 hasConcept C138885662 @default.
- W4312078896 hasConcept C154945302 @default.
- W4312078896 hasConcept C169976356 @default.
- W4312078896 hasConcept C2779106727 @default.
- W4312078896 hasConcept C2780226923 @default.
- W4312078896 hasConcept C41008148 @default.
- W4312078896 hasConcept C50644808 @default.
- W4312078896 hasConcept C64635419 @default.
- W4312078896 hasConcept C71924100 @default.
- W4312078896 hasConcept C79061980 @default.
- W4312078896 hasConcept C81363708 @default.
- W4312078896 hasConcept C8642999 @default.
- W4312078896 hasConcept C99508421 @default.
- W4312078896 hasConceptScore W4312078896C107038049 @default.
- W4312078896 hasConceptScore W4312078896C108583219 @default.
- W4312078896 hasConceptScore W4312078896C118552586 @default.
- W4312078896 hasConceptScore W4312078896C119857082 @default.
- W4312078896 hasConceptScore W4312078896C138885662 @default.
- W4312078896 hasConceptScore W4312078896C154945302 @default.
- W4312078896 hasConceptScore W4312078896C169976356 @default.
- W4312078896 hasConceptScore W4312078896C2779106727 @default.
- W4312078896 hasConceptScore W4312078896C2780226923 @default.
- W4312078896 hasConceptScore W4312078896C41008148 @default.
- W4312078896 hasConceptScore W4312078896C50644808 @default.
- W4312078896 hasConceptScore W4312078896C64635419 @default.
- W4312078896 hasConceptScore W4312078896C71924100 @default.
- W4312078896 hasConceptScore W4312078896C79061980 @default.
- W4312078896 hasConceptScore W4312078896C81363708 @default.
- W4312078896 hasConceptScore W4312078896C8642999 @default.
- W4312078896 hasConceptScore W4312078896C99508421 @default.
- W4312078896 hasFunder F4320323803 @default.
- W4312078896 hasIssue "1" @default.
- W4312078896 hasLocation W43120788961 @default.
- W4312078896 hasLocation W43120788962 @default.
- W4312078896 hasLocation W43120788963 @default.
- W4312078896 hasLocation W43120788964 @default.
- W4312078896 hasLocation W43120788965 @default.
- W4312078896 hasOpenAccess W4312078896 @default.
- W4312078896 hasPrimaryLocation W43120788961 @default.
- W4312078896 hasRelatedWork W2731899572 @default.
- W4312078896 hasRelatedWork W2999805992 @default.
- W4312078896 hasRelatedWork W3116150086 @default.
- W4312078896 hasRelatedWork W3130227562 @default.
- W4312078896 hasRelatedWork W3133861977 @default.