Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312082034> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4312082034 endingPage "1064" @default.
- W4312082034 startingPage "1044" @default.
- W4312082034 abstract "Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p left-parenthesis n right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>p(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the ordinary partition function. In the 1960s Atkin found a number of examples of congruences of the form <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p left-parenthesis upper Q cubed script l n plus beta right-parenthesis identical-to 0 left-parenthesis mod script l right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:msup> <mml:mi>Q</mml:mi> <mml:mn>3</mml:mn> </mml:msup> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mi>β<!-- β --></mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>≡<!-- ≡ --></mml:mo> <mml:mn>0</mml:mn> <mml:mspace width=0.667em /> <mml:mo stretchy=false>(</mml:mo> <mml:mi>mod</mml:mi> <mml:mspace width=0.333em /> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>p( Q^3 ell n+beta )equiv 0pmod ell</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script l> <mml:semantics> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:annotation encoding=application/x-tex>ell</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper Q> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding=application/x-tex>Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are prime and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=5 less-than-or-equal-to script l less-than-or-equal-to 31> <mml:semantics> <mml:mrow> <mml:mn>5</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mn>31</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>5leq ell leq 31</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; these lie in two natural families distinguished by the square class of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=1 minus 24 beta left-parenthesis mod script l right-parenthesis> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mn>24</mml:mn> <mml:mi>β<!-- β --></mml:mi> <mml:mspace width=0.667em /> <mml:mo stretchy=false>(</mml:mo> <mml:mi>mod</mml:mi> <mml:mspace width=0.333em /> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>1-24beta pmod ell</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In recent decades much work has been done to understand congruences of the form <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p left-parenthesis upper Q Superscript m Baseline script l n plus beta right-parenthesis identical-to 0 left-parenthesis mod script l right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:msup> <mml:mi>Q</mml:mi> <mml:mi>m</mml:mi> </mml:msup> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mi>β<!-- β --></mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>≡<!-- ≡ --></mml:mo> <mml:mn>0</mml:mn> <mml:mspace width=0.667em /> <mml:mo stretchy=false>(</mml:mo> <mml:mi>mod</mml:mi> <mml:mspace width=0.333em /> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>p(Q^mell n+beta )equiv 0pmod ell</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. It is now known that there are many such congruences when <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=m greater-than-or-equal-to 4> <mml:semantics> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>mgeq 4</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, that such congruences are scarce (if they exist at all) when <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=m equals 1 comma 2> <mml:semantics> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>m=1, 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and that for <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=m equals 0> <mml:semantics> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>m=0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such congruences exist only when <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script l equals 5 comma 7 comma 11> <mml:semantics> <mml:mrow> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo>=</mml:mo> <mml:mn>5</mml:mn> <mml:mo>,</mml:mo> <mml:mn>7</mml:mn> <mml:mo>,</mml:mo> <mml:mn>11</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>ell =5, 7, 11</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. For congruences like Atkin’s (when <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=m equals 3> <mml:semantics> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>m=3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>), more examples have been found for <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=5 less-than-or-equal-to script l less-than-or-equal-to 31> <mml:semantics> <mml:mrow> <mml:mn>5</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mn>31</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>5leq ell leq 31</mml:annotation> </mml:semantics> </mml:math> </inline-formula> but little else seems to be known. Here we use the theory of modular Galois representations to prove that for every prime <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script l greater-than-or-equal-to 5> <mml:semantics> <mml:mrow> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>5</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>ell geq 5</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, there are infinitely many congruences like Atkin’s in the first natural family which he discovered and that for at least <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=17 slash 24> <mml:semantics> <mml:mrow> <mml:mn>17</mml:mn> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>24</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>17/24</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the primes <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script l> <mml:semantics> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:annotation encoding=application/x-tex>ell</mml:annotation> </mml:semantics> </mml:math> </inline-formula> there are infinitely many congruences in the second family." @default.
- W4312082034 created "2023-01-04" @default.
- W4312082034 creator A5048878001 @default.
- W4312082034 creator A5083645227 @default.
- W4312082034 creator A5089654093 @default.
- W4312082034 date "2022-12-08" @default.
- W4312082034 modified "2023-09-26" @default.
- W4312082034 title "Congruences like Atkin’s for the partition function" @default.
- W4312082034 cites W1496632731 @default.
- W4312082034 cites W1514233326 @default.
- W4312082034 cites W1556069388 @default.
- W4312082034 cites W1604721544 @default.
- W4312082034 cites W1848718921 @default.
- W4312082034 cites W1964188782 @default.
- W4312082034 cites W1976204593 @default.
- W4312082034 cites W1994683358 @default.
- W4312082034 cites W1995355777 @default.
- W4312082034 cites W2000658662 @default.
- W4312082034 cites W2017789039 @default.
- W4312082034 cites W2027421753 @default.
- W4312082034 cites W2043612592 @default.
- W4312082034 cites W2046725413 @default.
- W4312082034 cites W2068711638 @default.
- W4312082034 cites W2074704407 @default.
- W4312082034 cites W2116062946 @default.
- W4312082034 cites W2124690936 @default.
- W4312082034 cites W2152369819 @default.
- W4312082034 cites W2323078291 @default.
- W4312082034 cites W2759165591 @default.
- W4312082034 cites W2905975390 @default.
- W4312082034 cites W2964329300 @default.
- W4312082034 cites W3038564223 @default.
- W4312082034 cites W3041442720 @default.
- W4312082034 cites W4237026854 @default.
- W4312082034 cites W4294760579 @default.
- W4312082034 cites W4312082034 @default.
- W4312082034 doi "https://doi.org/10.1090/btran/128" @default.
- W4312082034 hasPublicationYear "2022" @default.
- W4312082034 type Work @default.
- W4312082034 citedByCount "3" @default.
- W4312082034 countsByYear W43120820342022 @default.
- W4312082034 countsByYear W43120820342023 @default.
- W4312082034 crossrefType "journal-article" @default.
- W4312082034 hasAuthorship W4312082034A5048878001 @default.
- W4312082034 hasAuthorship W4312082034A5083645227 @default.
- W4312082034 hasAuthorship W4312082034A5089654093 @default.
- W4312082034 hasBestOaLocation W43120820341 @default.
- W4312082034 hasConcept C11413529 @default.
- W4312082034 hasConcept C154945302 @default.
- W4312082034 hasConcept C33923547 @default.
- W4312082034 hasConcept C41008148 @default.
- W4312082034 hasConceptScore W4312082034C11413529 @default.
- W4312082034 hasConceptScore W4312082034C154945302 @default.
- W4312082034 hasConceptScore W4312082034C33923547 @default.
- W4312082034 hasConceptScore W4312082034C41008148 @default.
- W4312082034 hasFunder F4320306076 @default.
- W4312082034 hasIssue "33" @default.
- W4312082034 hasLocation W43120820341 @default.
- W4312082034 hasLocation W43120820342 @default.
- W4312082034 hasOpenAccess W4312082034 @default.
- W4312082034 hasPrimaryLocation W43120820341 @default.
- W4312082034 hasRelatedWork W1979597421 @default.
- W4312082034 hasRelatedWork W2007980826 @default.
- W4312082034 hasRelatedWork W2061531152 @default.
- W4312082034 hasRelatedWork W2077600819 @default.
- W4312082034 hasRelatedWork W2386767533 @default.
- W4312082034 hasRelatedWork W2748952813 @default.
- W4312082034 hasRelatedWork W2899084033 @default.
- W4312082034 hasRelatedWork W3002753104 @default.
- W4312082034 hasRelatedWork W4225152035 @default.
- W4312082034 hasRelatedWork W4245490552 @default.
- W4312082034 hasVolume "9" @default.
- W4312082034 isParatext "false" @default.
- W4312082034 isRetracted "false" @default.
- W4312082034 workType "article" @default.