Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312084489> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4312084489 endingPage "119430" @default.
- W4312084489 startingPage "119430" @default.
- W4312084489 abstract "The COVID-19 pandemic has been affecting the world since December 2019, and nowadays, the number of infected is increasing rapidly. Chest X-ray images are clinical adjuncts that can be used in the diagnosis of COVID-19 disease. Because of the rapid spread of COVID-19 disease worldwide and the limited number of expert radiologists, the proposed method uses the automatic diagnosis method rather than a manual diagnosis method. In the paper, COVID-19 Positive/Negative (2275 Positive, 4626 Negative) and Normal/Pneumonia (2313 Normal, 2313 Pneumonia) are diagnosed using chest X-ray images. Herein, 80 % and 20 % of the images are used in the training and validation set, respectively. In the proposed method, six different classifiers are trained using chest X-ray images, and the five most successful classifiers are used in both phases. In Phase-1 and Phase-2, image features are extracted using the Bag of Features method for Cosine K-Nearest Neighbor (KNN), Linear Discriminant, Logistic Regression, Bagged Trees Ensemble, Medium Gaussian Support Vector Machine (SVM), excluding SqueezeNet Deep Learning (K = 2000 and K = 1500 for Phase-1 and Phase-2, respectively). In both phases, the five most successful classifiers are determined, and images classify with the help of the Majority Voting (Mathematical Evaluation) method. The application of the proposed method is designed for users to diagnose COVID-19 Positive, Normal, and Pneumonia. The results show that accuracy values obtained by Majority Voting (Mathematical Evaluation) method for Phase-1 and Phase-2 are equal to 99.86 % and 99.28 %, respectively. Thus, it indicates that the accuracy of the whole system is 99.63 %. When we analyze the classification performance metrics for Phase-1 and Phase-2, Specificity (%), Precision (%), Recall (%), F1 Score (%), Area Under Curve (AUC), and Matthews Correlation Coefficient (MCC) are equal to 99.98–99.83–99.07–99.51–0.9974–0.9855 and 99.73–99.69–98.63–99.23–0.9928–0.9518, respectively. Moreover, if the classification performance metrics of the whole system are examined, it is seen that Specificity (%), Precision (%), Recall (%), F1 Score (%), AUC, and MCC are 99.88, 99.78, 98.90, 99.40, 0.9956, and 0.9720, respectively. When the studies in the literature are examined, the results show that the proposed model is better than its counterparts. Because the best performance metrics for the dataset used were obtained in this study. In addition, since the biphasic majority voting technique is used in the study, it is seen that the proposed model is more reliable. On the other hand, although there are tens of thousands of studies on this subject, the usability of these models is debatable since most of them do not have graphical user interface applications. Already, in artificial intelligence technologies, besides the performance of the developed models, their usability is also important. Because the developed models can generally be used by people who are less knowledgeable about artificial intelligence." @default.
- W4312084489 created "2023-01-04" @default.
- W4312084489 creator A5014596039 @default.
- W4312084489 creator A5054066284 @default.
- W4312084489 date "2023-04-01" @default.
- W4312084489 modified "2023-10-11" @default.
- W4312084489 title "Biphasic majority voting-based comparative COVID-19 diagnosis using chest X-ray images" @default.
- W4312084489 cites W2034656920 @default.
- W4312084489 cites W2134430750 @default.
- W4312084489 cites W2703643318 @default.
- W4312084489 cites W2785637175 @default.
- W4312084489 cites W2945853474 @default.
- W4312084489 cites W2953409786 @default.
- W4312084489 cites W2989345584 @default.
- W4312084489 cites W3006472059 @default.
- W4312084489 cites W3023402713 @default.
- W4312084489 cites W3030621456 @default.
- W4312084489 cites W3034560014 @default.
- W4312084489 cites W3042426630 @default.
- W4312084489 cites W3044867970 @default.
- W4312084489 cites W3080833865 @default.
- W4312084489 cites W3089168916 @default.
- W4312084489 cites W3093455605 @default.
- W4312084489 cites W3094764353 @default.
- W4312084489 cites W3122727436 @default.
- W4312084489 cites W3126296879 @default.
- W4312084489 cites W3126674636 @default.
- W4312084489 cites W3133631487 @default.
- W4312084489 cites W3135919189 @default.
- W4312084489 cites W3141637546 @default.
- W4312084489 cites W3142371777 @default.
- W4312084489 doi "https://doi.org/10.1016/j.eswa.2022.119430" @default.
- W4312084489 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36570382" @default.
- W4312084489 hasPublicationYear "2023" @default.
- W4312084489 type Work @default.
- W4312084489 citedByCount "9" @default.
- W4312084489 countsByYear W43120844892023 @default.
- W4312084489 crossrefType "journal-article" @default.
- W4312084489 hasAuthorship W4312084489A5014596039 @default.
- W4312084489 hasAuthorship W4312084489A5054066284 @default.
- W4312084489 hasBestOaLocation W43120844892 @default.
- W4312084489 hasConcept C119857082 @default.
- W4312084489 hasConcept C12267149 @default.
- W4312084489 hasConcept C126322002 @default.
- W4312084489 hasConcept C142724271 @default.
- W4312084489 hasConcept C151956035 @default.
- W4312084489 hasConcept C153180895 @default.
- W4312084489 hasConcept C153668964 @default.
- W4312084489 hasConcept C154945302 @default.
- W4312084489 hasConcept C169258074 @default.
- W4312084489 hasConcept C2777914695 @default.
- W4312084489 hasConcept C2779134260 @default.
- W4312084489 hasConcept C3008058167 @default.
- W4312084489 hasConcept C33923547 @default.
- W4312084489 hasConcept C41008148 @default.
- W4312084489 hasConcept C524204448 @default.
- W4312084489 hasConcept C69738355 @default.
- W4312084489 hasConcept C71924100 @default.
- W4312084489 hasConceptScore W4312084489C119857082 @default.
- W4312084489 hasConceptScore W4312084489C12267149 @default.
- W4312084489 hasConceptScore W4312084489C126322002 @default.
- W4312084489 hasConceptScore W4312084489C142724271 @default.
- W4312084489 hasConceptScore W4312084489C151956035 @default.
- W4312084489 hasConceptScore W4312084489C153180895 @default.
- W4312084489 hasConceptScore W4312084489C153668964 @default.
- W4312084489 hasConceptScore W4312084489C154945302 @default.
- W4312084489 hasConceptScore W4312084489C169258074 @default.
- W4312084489 hasConceptScore W4312084489C2777914695 @default.
- W4312084489 hasConceptScore W4312084489C2779134260 @default.
- W4312084489 hasConceptScore W4312084489C3008058167 @default.
- W4312084489 hasConceptScore W4312084489C33923547 @default.
- W4312084489 hasConceptScore W4312084489C41008148 @default.
- W4312084489 hasConceptScore W4312084489C524204448 @default.
- W4312084489 hasConceptScore W4312084489C69738355 @default.
- W4312084489 hasConceptScore W4312084489C71924100 @default.
- W4312084489 hasLocation W43120844891 @default.
- W4312084489 hasLocation W43120844892 @default.
- W4312084489 hasLocation W43120844893 @default.
- W4312084489 hasOpenAccess W4312084489 @default.
- W4312084489 hasPrimaryLocation W43120844891 @default.
- W4312084489 hasRelatedWork W2979979539 @default.
- W4312084489 hasRelatedWork W3168046494 @default.
- W4312084489 hasRelatedWork W3195168932 @default.
- W4312084489 hasRelatedWork W4246246790 @default.
- W4312084489 hasRelatedWork W4281846282 @default.
- W4312084489 hasRelatedWork W4285237370 @default.
- W4312084489 hasRelatedWork W4311106074 @default.
- W4312084489 hasRelatedWork W4312707991 @default.
- W4312084489 hasRelatedWork W4321636153 @default.
- W4312084489 hasRelatedWork W4377964522 @default.
- W4312084489 hasVolume "216" @default.
- W4312084489 isParatext "false" @default.
- W4312084489 isRetracted "false" @default.
- W4312084489 workType "article" @default.