Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312087961> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4312087961 abstract "Background Early identification of dementia is crucial for prompt intervention and better outcomes for high-risk individuals in the general population. The use of machine learning in dementia prediction has allowed for highly accurate models that could aid in early classification; however, they have focused on expensive predictors. Exploring predictors that are more accessible is crucial for the possible widespread use of machine learning models in clinical practice. Method Data from 4,793 individuals without dementia or mild cognitive impairment at baseline were included from the population-based AGES-Reykjavik Study. Cognitive, biometric, and MRI assessments (total: 64 variables) were collected at baseline, with follow-up of incident dementia diagnoses for a maximum of 12 years. Elastic net regression, random forest, support vector machine, Naïve Bayes, logistic regression, and elastic net Cox regression (for time-to-event analysis) were explored as possible algorithms. Model 1 was fit using all variables, model 2 after feature selection using the Boruta package, and model 3 without neuroimaging markers (clinically accessible model). Ten-fold cross-validation, repeated ten times, was implemented during training. Upsampling was used to account for imbalanced data. Tuning parameters were optimized for recalibration automatically using the caret package. Result During training, the Model 2 elastic net regression had the highest AUC [0.78; 95% CI: 0.76-0.80], sensitivity [72; 95% CI: 68-75], and specificity [72; 95% CI: 70-73]. For Model 3, excluding MRI markers, the AUC remained high [AUC 0.75; 95% CI: 0.73-0.77]. Similar results were found in our test data for Model 3 [AUC 0.74; 95% CI: 0.71-0.77]; thus, the risk of overfitting was low. Time-to-event analysis using elastic net Cox models showed similar discrimination [c-statistic 0.79] during testing. The most important variables based on Boruta selection included the Activities of Daily Living, presence of APOE e4 allele, memory functioning, and sex. Conclusion Supervised machine learning could be used to identify individuals at high-risk for dementia in the general population using easily accessible variables. As dementia becomes a leading problem in developing countries, this clinically accessible model could be explored for use in these areas for better identification of individuals at risk in the community. Further external validation is needed." @default.
- W4312087961 created "2023-01-04" @default.
- W4312087961 creator A5000664639 @default.
- W4312087961 creator A5002700472 @default.
- W4312087961 creator A5004434116 @default.
- W4312087961 creator A5018722034 @default.
- W4312087961 creator A5033701881 @default.
- W4312087961 date "2022-12-01" @default.
- W4312087961 modified "2023-09-28" @default.
- W4312087961 title "Dementia prediction in the general population using clinically accessible variables: a proof‐of‐concept study using machine learning. The AGES‐Reykjavik Study" @default.
- W4312087961 doi "https://doi.org/10.1002/alz.064474" @default.
- W4312087961 hasPublicationYear "2022" @default.
- W4312087961 type Work @default.
- W4312087961 citedByCount "0" @default.
- W4312087961 crossrefType "journal-article" @default.
- W4312087961 hasAuthorship W4312087961A5000664639 @default.
- W4312087961 hasAuthorship W4312087961A5002700472 @default.
- W4312087961 hasAuthorship W4312087961A5004434116 @default.
- W4312087961 hasAuthorship W4312087961A5018722034 @default.
- W4312087961 hasAuthorship W4312087961A5033701881 @default.
- W4312087961 hasConcept C105795698 @default.
- W4312087961 hasConcept C119857082 @default.
- W4312087961 hasConcept C12267149 @default.
- W4312087961 hasConcept C126322002 @default.
- W4312087961 hasConcept C148483581 @default.
- W4312087961 hasConcept C151956035 @default.
- W4312087961 hasConcept C152877465 @default.
- W4312087961 hasConcept C154945302 @default.
- W4312087961 hasConcept C169258074 @default.
- W4312087961 hasConcept C203868755 @default.
- W4312087961 hasConcept C2779134260 @default.
- W4312087961 hasConcept C2779483572 @default.
- W4312087961 hasConcept C2908647359 @default.
- W4312087961 hasConcept C33923547 @default.
- W4312087961 hasConcept C41008148 @default.
- W4312087961 hasConcept C71924100 @default.
- W4312087961 hasConcept C83546350 @default.
- W4312087961 hasConcept C99454951 @default.
- W4312087961 hasConceptScore W4312087961C105795698 @default.
- W4312087961 hasConceptScore W4312087961C119857082 @default.
- W4312087961 hasConceptScore W4312087961C12267149 @default.
- W4312087961 hasConceptScore W4312087961C126322002 @default.
- W4312087961 hasConceptScore W4312087961C148483581 @default.
- W4312087961 hasConceptScore W4312087961C151956035 @default.
- W4312087961 hasConceptScore W4312087961C152877465 @default.
- W4312087961 hasConceptScore W4312087961C154945302 @default.
- W4312087961 hasConceptScore W4312087961C169258074 @default.
- W4312087961 hasConceptScore W4312087961C203868755 @default.
- W4312087961 hasConceptScore W4312087961C2779134260 @default.
- W4312087961 hasConceptScore W4312087961C2779483572 @default.
- W4312087961 hasConceptScore W4312087961C2908647359 @default.
- W4312087961 hasConceptScore W4312087961C33923547 @default.
- W4312087961 hasConceptScore W4312087961C41008148 @default.
- W4312087961 hasConceptScore W4312087961C71924100 @default.
- W4312087961 hasConceptScore W4312087961C83546350 @default.
- W4312087961 hasConceptScore W4312087961C99454951 @default.
- W4312087961 hasIssue "S11" @default.
- W4312087961 hasLocation W43120879611 @default.
- W4312087961 hasOpenAccess W4312087961 @default.
- W4312087961 hasPrimaryLocation W43120879611 @default.
- W4312087961 hasRelatedWork W2985924212 @default.
- W4312087961 hasRelatedWork W2991486385 @default.
- W4312087961 hasRelatedWork W3165907317 @default.
- W4312087961 hasRelatedWork W3210877509 @default.
- W4312087961 hasRelatedWork W4213444042 @default.
- W4312087961 hasRelatedWork W4225360065 @default.
- W4312087961 hasRelatedWork W4285237370 @default.
- W4312087961 hasRelatedWork W4321636153 @default.
- W4312087961 hasRelatedWork W4323557163 @default.
- W4312087961 hasRelatedWork W4327511089 @default.
- W4312087961 hasVolume "18" @default.
- W4312087961 isParatext "false" @default.
- W4312087961 isRetracted "false" @default.
- W4312087961 workType "article" @default.