Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312093756> ?p ?o ?g. }
- W4312093756 abstract "Hydrogen is a promising alternative energy source due to its significantly high energy density. Also, hydrogen can be transformed into electricity in energy systems such as fuel cells. The transition toward hydrogen-consuming applications requires a hydrogen storage method that comes with pack hydrogen with high density. Among diverse methods, absorbing hydrogen on host metal is applicable at room temperature and pressure, which does not provide any safety concerns. In this regard, AB2 metal hydride with potentially high hydrogen density is selected as an appropriate host. Machine learning techniques have been applied to establish a relationship on the effect of the chemical composition of these hosts on hydrogen storage. For this purpose, a data bank of 314 data point pairs was used. In this assessment, the different A-site and B-site elements were used as the input variables, while the hydrogen absorption energy resulted in the output. A robust Gaussian process regression (GPR) approach with four kernel functions is proposed to predict the hydrogen absorption energy based on the inputs. All the GPR models' performance was quite excellent; notably, GPR with Exponential kernel function showed the highest preciseness with R2, MRE, MSE, RMSE, and STD of 0.969, 2.291%, 3.909, 2.501, and 1.878, respectively. Additionally, the sensitivity of analysis indicated that ZR, Ti, and Cr are the most demining elements in this system." @default.
- W4312093756 created "2023-01-04" @default.
- W4312093756 creator A5031193533 @default.
- W4312093756 creator A5032651619 @default.
- W4312093756 creator A5044942140 @default.
- W4312093756 creator A5058546333 @default.
- W4312093756 creator A5065257265 @default.
- W4312093756 creator A5074382261 @default.
- W4312093756 creator A5079695703 @default.
- W4312093756 date "2022-12-19" @default.
- W4312093756 modified "2023-10-14" @default.
- W4312093756 title "Estimating hydrogen absorption energy on different metal hydrides using Gaussian process regression approach" @default.
- W4312093756 cites W1489867037 @default.
- W4312093756 cites W1536167388 @default.
- W4312093756 cites W1689115168 @default.
- W4312093756 cites W1847336091 @default.
- W4312093756 cites W1887756756 @default.
- W4312093756 cites W1982891635 @default.
- W4312093756 cites W1983861808 @default.
- W4312093756 cites W2017900954 @default.
- W4312093756 cites W2057664637 @default.
- W4312093756 cites W2080886898 @default.
- W4312093756 cites W2292405431 @default.
- W4312093756 cites W2312227072 @default.
- W4312093756 cites W2317058270 @default.
- W4312093756 cites W2421882692 @default.
- W4312093756 cites W2481301899 @default.
- W4312093756 cites W2515761302 @default.
- W4312093756 cites W2518748669 @default.
- W4312093756 cites W2542549348 @default.
- W4312093756 cites W2560369949 @default.
- W4312093756 cites W2626025588 @default.
- W4312093756 cites W2725459030 @default.
- W4312093756 cites W2769719228 @default.
- W4312093756 cites W2804739382 @default.
- W4312093756 cites W2912654671 @default.
- W4312093756 cites W2916480662 @default.
- W4312093756 cites W2918083457 @default.
- W4312093756 cites W2942915186 @default.
- W4312093756 cites W2944458943 @default.
- W4312093756 cites W2968553338 @default.
- W4312093756 cites W2989592648 @default.
- W4312093756 cites W2997563649 @default.
- W4312093756 cites W2998704111 @default.
- W4312093756 cites W2999458928 @default.
- W4312093756 cites W3020877831 @default.
- W4312093756 cites W3028998264 @default.
- W4312093756 cites W3047662283 @default.
- W4312093756 cites W3084593297 @default.
- W4312093756 cites W3117213354 @default.
- W4312093756 cites W3128511414 @default.
- W4312093756 cites W3165702652 @default.
- W4312093756 cites W3191405391 @default.
- W4312093756 cites W3198508198 @default.
- W4312093756 cites W3203325917 @default.
- W4312093756 cites W333530560 @default.
- W4312093756 cites W4214876422 @default.
- W4312093756 cites W4253540135 @default.
- W4312093756 cites W562035013 @default.
- W4312093756 doi "https://doi.org/10.1038/s41598-022-26522-2" @default.
- W4312093756 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36536023" @default.
- W4312093756 hasPublicationYear "2022" @default.
- W4312093756 type Work @default.
- W4312093756 citedByCount "2" @default.
- W4312093756 countsByYear W43120937562023 @default.
- W4312093756 crossrefType "journal-article" @default.
- W4312093756 hasAuthorship W4312093756A5031193533 @default.
- W4312093756 hasAuthorship W4312093756A5032651619 @default.
- W4312093756 hasAuthorship W4312093756A5044942140 @default.
- W4312093756 hasAuthorship W4312093756A5058546333 @default.
- W4312093756 hasAuthorship W4312093756A5065257265 @default.
- W4312093756 hasAuthorship W4312093756A5074382261 @default.
- W4312093756 hasAuthorship W4312093756A5079695703 @default.
- W4312093756 hasBestOaLocation W43120937561 @default.
- W4312093756 hasConcept C114614502 @default.
- W4312093756 hasConcept C119857082 @default.
- W4312093756 hasConcept C125287762 @default.
- W4312093756 hasConcept C147597530 @default.
- W4312093756 hasConcept C159985019 @default.
- W4312093756 hasConcept C163716315 @default.
- W4312093756 hasConcept C178790620 @default.
- W4312093756 hasConcept C185592680 @default.
- W4312093756 hasConcept C186060115 @default.
- W4312093756 hasConcept C192562407 @default.
- W4312093756 hasConcept C2777961443 @default.
- W4312093756 hasConcept C33923547 @default.
- W4312093756 hasConcept C41008148 @default.
- W4312093756 hasConcept C512968161 @default.
- W4312093756 hasConcept C68044625 @default.
- W4312093756 hasConcept C7218915 @default.
- W4312093756 hasConcept C74193536 @default.
- W4312093756 hasConcept C81692654 @default.
- W4312093756 hasConcept C86803240 @default.
- W4312093756 hasConcept C9682599 @default.
- W4312093756 hasConceptScore W4312093756C114614502 @default.
- W4312093756 hasConceptScore W4312093756C119857082 @default.
- W4312093756 hasConceptScore W4312093756C125287762 @default.
- W4312093756 hasConceptScore W4312093756C147597530 @default.
- W4312093756 hasConceptScore W4312093756C159985019 @default.
- W4312093756 hasConceptScore W4312093756C163716315 @default.