Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312096506> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4312096506 abstract "EEG state classification is used in many fields, and decision-making, as a higher cognitive function of the brain, has high research significance, and this paper is mainly to study the state of decision-making. Therefore, we study the classification of three decision states, before-decision, in-decision, post-decision, and two resting states, eye-opened, eye-closed. In this study, three methods are used to compare the classification effects, namely DE+SVM, DE+DGCNN, EEGNet, among which differential entropy (DE) is a frequency domain feature, which can extract effective features in EEG emotion recognition; DGCNN is a dynamic graph convolutional neural network which uses DE as the node feature and dynamically learns the adjacency matrix for classification; EEGNet is an end-to-end neural network, which is designed to be used in multiple experimental paradigms. The above 3 methods achieved 62.80%±9.67%, 78.70%±8.27%, and 88.83±6.03% accuracy in within-subject classification respectively. Finally, we visualize the adjacency matrix learned by DGCNN and the spatial filter learned by EEGNet to see the knowledge learned by the model." @default.
- W4312096506 created "2023-01-04" @default.
- W4312096506 creator A5067693902 @default.
- W4312096506 creator A5073822535 @default.
- W4312096506 date "2022-11-05" @default.
- W4312096506 modified "2023-10-04" @default.
- W4312096506 title "Mental state identification based on the classification of EEG signals" @default.
- W4312096506 cites W2027927824 @default.
- W4312096506 cites W2039483201 @default.
- W4312096506 cites W2043753287 @default.
- W4312096506 cites W2048524988 @default.
- W4312096506 cites W2090157943 @default.
- W4312096506 cites W2101091849 @default.
- W4312096506 cites W2107544549 @default.
- W4312096506 cites W2132055771 @default.
- W4312096506 cites W2147965914 @default.
- W4312096506 cites W2165587830 @default.
- W4312096506 cites W2736270372 @default.
- W4312096506 cites W3102455230 @default.
- W4312096506 cites W3159973816 @default.
- W4312096506 cites W3164671752 @default.
- W4312096506 doi "https://doi.org/10.1109/cisp-bmei56279.2022.9980282" @default.
- W4312096506 hasPublicationYear "2022" @default.
- W4312096506 type Work @default.
- W4312096506 citedByCount "1" @default.
- W4312096506 crossrefType "proceedings-article" @default.
- W4312096506 hasAuthorship W4312096506A5067693902 @default.
- W4312096506 hasAuthorship W4312096506A5073822535 @default.
- W4312096506 hasConcept C106301342 @default.
- W4312096506 hasConcept C118552586 @default.
- W4312096506 hasConcept C119857082 @default.
- W4312096506 hasConcept C121332964 @default.
- W4312096506 hasConcept C12267149 @default.
- W4312096506 hasConcept C132525143 @default.
- W4312096506 hasConcept C153180895 @default.
- W4312096506 hasConcept C154945302 @default.
- W4312096506 hasConcept C15744967 @default.
- W4312096506 hasConcept C180356752 @default.
- W4312096506 hasConcept C41008148 @default.
- W4312096506 hasConcept C522805319 @default.
- W4312096506 hasConcept C52622490 @default.
- W4312096506 hasConcept C62520636 @default.
- W4312096506 hasConcept C80444323 @default.
- W4312096506 hasConcept C81363708 @default.
- W4312096506 hasConcept C84525736 @default.
- W4312096506 hasConceptScore W4312096506C106301342 @default.
- W4312096506 hasConceptScore W4312096506C118552586 @default.
- W4312096506 hasConceptScore W4312096506C119857082 @default.
- W4312096506 hasConceptScore W4312096506C121332964 @default.
- W4312096506 hasConceptScore W4312096506C12267149 @default.
- W4312096506 hasConceptScore W4312096506C132525143 @default.
- W4312096506 hasConceptScore W4312096506C153180895 @default.
- W4312096506 hasConceptScore W4312096506C154945302 @default.
- W4312096506 hasConceptScore W4312096506C15744967 @default.
- W4312096506 hasConceptScore W4312096506C180356752 @default.
- W4312096506 hasConceptScore W4312096506C41008148 @default.
- W4312096506 hasConceptScore W4312096506C522805319 @default.
- W4312096506 hasConceptScore W4312096506C52622490 @default.
- W4312096506 hasConceptScore W4312096506C62520636 @default.
- W4312096506 hasConceptScore W4312096506C80444323 @default.
- W4312096506 hasConceptScore W4312096506C81363708 @default.
- W4312096506 hasConceptScore W4312096506C84525736 @default.
- W4312096506 hasFunder F4320321878 @default.
- W4312096506 hasLocation W43120965061 @default.
- W4312096506 hasOpenAccess W4312096506 @default.
- W4312096506 hasPrimaryLocation W43120965061 @default.
- W4312096506 hasRelatedWork W2041399278 @default.
- W4312096506 hasRelatedWork W2136184105 @default.
- W4312096506 hasRelatedWork W2320736787 @default.
- W4312096506 hasRelatedWork W2336974148 @default.
- W4312096506 hasRelatedWork W2399116914 @default.
- W4312096506 hasRelatedWork W2996933976 @default.
- W4312096506 hasRelatedWork W3013515612 @default.
- W4312096506 hasRelatedWork W3208266890 @default.
- W4312096506 hasRelatedWork W2187500075 @default.
- W4312096506 hasRelatedWork W2345184372 @default.
- W4312096506 isParatext "false" @default.
- W4312096506 isRetracted "false" @default.
- W4312096506 workType "article" @default.