Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312100603> ?p ?o ?g. }
- W4312100603 endingPage "52" @default.
- W4312100603 startingPage "52" @default.
- W4312100603 abstract "Greenhouse climate control systems are usually based on greenhouse microclimate settings to exert any control. However, to save energy, water and nutrients, additional parameters related to crop performance and physiology will have to be considered. In addition, detecting crop stress before it is clearly visible by naked eye is an advantage that could aid in microclimate control. In this study, a Machine Learning (ML) model which takes into account microclimate and crop physiological data to detect different types of crop stress was developed and tested. For this purpose, a multi-sensor platform was used to record tomato plant physiological characteristics under different fertigation and air temperature conditions. The innovation of the current model lies in the integration of photosynthesis rate (Ps) values estimated by means of remote sensing using a photochemical reflectance index (PRI). Through this process, the time-series Ps data were combined with crop leaf temperature and microclimate data by means of the ML model. Two different algorithms were evaluated: Gradient Boosting (GB) and MultiLayer perceptron (MLP). Two runs with different structures took place for each algorithm. In RUN 1, there were more feature inputs than the outputs to build a model with high predictive accuracy. However, in order to simplify the process and develop a user-friendly approach, a second, different run was carried out. Thus, in RUN 2, the inputs were fewer than the outputs, and that is why the performance of the model in this case was lower than in the case of RUN 1. Particularly, MLP showed 91% and 83% accuracy in the training sample, and 89% and 82% in testing sample, for RUNs 1 and 2, respectively. GB showed 100% accuracy in the training sample for both runs, and 91% and 83% in testing sample in RUN 1 and RUN 2, respectively. To improve the accuracy of RUN 2, a larger database is required. Both models, however, could easily be incorporated into existing greenhouse climate monitoring and control systems, replacing human experience in detecting greenhouse crop stress conditions." @default.
- W4312100603 created "2023-01-04" @default.
- W4312100603 creator A5037031862 @default.
- W4312100603 creator A5051864963 @default.
- W4312100603 date "2022-12-22" @default.
- W4312100603 modified "2023-10-05" @default.
- W4312100603 title "Machine Learning-Based Crop Stress Detection in Greenhouses" @default.
- W4312100603 cites W1678356000 @default.
- W4312100603 cites W170586164 @default.
- W4312100603 cites W1916445479 @default.
- W4312100603 cites W2015640417 @default.
- W4312100603 cites W2023519189 @default.
- W4312100603 cites W2053578580 @default.
- W4312100603 cites W2073872272 @default.
- W4312100603 cites W2087877962 @default.
- W4312100603 cites W2095727900 @default.
- W4312100603 cites W2101246638 @default.
- W4312100603 cites W2116465461 @default.
- W4312100603 cites W2130505659 @default.
- W4312100603 cites W2195361594 @default.
- W4312100603 cites W2231576311 @default.
- W4312100603 cites W2534136842 @default.
- W4312100603 cites W2559123334 @default.
- W4312100603 cites W2562427914 @default.
- W4312100603 cites W2617868146 @default.
- W4312100603 cites W2755987164 @default.
- W4312100603 cites W2789255992 @default.
- W4312100603 cites W2793927960 @default.
- W4312100603 cites W2885079390 @default.
- W4312100603 cites W2885770726 @default.
- W4312100603 cites W2977048736 @default.
- W4312100603 cites W2999656210 @default.
- W4312100603 cites W3015341441 @default.
- W4312100603 cites W3026574809 @default.
- W4312100603 cites W3099788020 @default.
- W4312100603 cites W3159976439 @default.
- W4312100603 cites W3200824799 @default.
- W4312100603 cites W3210356177 @default.
- W4312100603 cites W3210782933 @default.
- W4312100603 cites W4206630377 @default.
- W4312100603 cites W4213189228 @default.
- W4312100603 cites W4223559749 @default.
- W4312100603 cites W4281684384 @default.
- W4312100603 doi "https://doi.org/10.3390/plants12010052" @default.
- W4312100603 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36616180" @default.
- W4312100603 hasPublicationYear "2022" @default.
- W4312100603 type Work @default.
- W4312100603 citedByCount "3" @default.
- W4312100603 countsByYear W43121006032023 @default.
- W4312100603 crossrefType "journal-article" @default.
- W4312100603 hasAuthorship W4312100603A5037031862 @default.
- W4312100603 hasAuthorship W4312100603A5051864963 @default.
- W4312100603 hasBestOaLocation W43121006031 @default.
- W4312100603 hasConcept C119857082 @default.
- W4312100603 hasConcept C127413603 @default.
- W4312100603 hasConcept C142796444 @default.
- W4312100603 hasConcept C154945302 @default.
- W4312100603 hasConcept C167296696 @default.
- W4312100603 hasConcept C169258074 @default.
- W4312100603 hasConcept C179717631 @default.
- W4312100603 hasConcept C18903297 @default.
- W4312100603 hasConcept C32198211 @default.
- W4312100603 hasConcept C32957820 @default.
- W4312100603 hasConcept C39432304 @default.
- W4312100603 hasConcept C41008148 @default.
- W4312100603 hasConcept C50644808 @default.
- W4312100603 hasConcept C60908668 @default.
- W4312100603 hasConcept C6557445 @default.
- W4312100603 hasConcept C86803240 @default.
- W4312100603 hasConcept C88463610 @default.
- W4312100603 hasConceptScore W4312100603C119857082 @default.
- W4312100603 hasConceptScore W4312100603C127413603 @default.
- W4312100603 hasConceptScore W4312100603C142796444 @default.
- W4312100603 hasConceptScore W4312100603C154945302 @default.
- W4312100603 hasConceptScore W4312100603C167296696 @default.
- W4312100603 hasConceptScore W4312100603C169258074 @default.
- W4312100603 hasConceptScore W4312100603C179717631 @default.
- W4312100603 hasConceptScore W4312100603C18903297 @default.
- W4312100603 hasConceptScore W4312100603C32198211 @default.
- W4312100603 hasConceptScore W4312100603C32957820 @default.
- W4312100603 hasConceptScore W4312100603C39432304 @default.
- W4312100603 hasConceptScore W4312100603C41008148 @default.
- W4312100603 hasConceptScore W4312100603C50644808 @default.
- W4312100603 hasConceptScore W4312100603C60908668 @default.
- W4312100603 hasConceptScore W4312100603C6557445 @default.
- W4312100603 hasConceptScore W4312100603C86803240 @default.
- W4312100603 hasConceptScore W4312100603C88463610 @default.
- W4312100603 hasIssue "1" @default.
- W4312100603 hasLocation W43121006031 @default.
- W4312100603 hasLocation W43121006032 @default.
- W4312100603 hasLocation W43121006033 @default.
- W4312100603 hasOpenAccess W4312100603 @default.
- W4312100603 hasPrimaryLocation W43121006031 @default.
- W4312100603 hasRelatedWork W181846456 @default.
- W4312100603 hasRelatedWork W1915129189 @default.
- W4312100603 hasRelatedWork W3018959556 @default.
- W4312100603 hasRelatedWork W3028499805 @default.
- W4312100603 hasRelatedWork W3168994312 @default.