Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312114902> ?p ?o ?g. }
- W4312114902 abstract "Abstract Background Medication recommendation based on electronic medical record (EMR) is a research hot spot in smart healthcare. For developing computational medication recommendation methods based on EMR, an important challenge is the lack of a large number of longitudinal EMR data with time correlation. Faced with this challenge, this paper proposes a new EMR-based medication recommendation model called MR-KPA, which combines knowledge-enhanced pre-training with the deep adversarial network to improve medication recommendation from both feature representation and the fine-tuning process. Firstly, a knowledge-enhanced pre-training visit model is proposed to realize domain knowledge-based external feature fusion and pre-training-based internal feature mining for improving the feature representation. Secondly, a medication recommendation model based on the deep adversarial network is developed to optimize the fine-tuning process of pre-training visit model and alleviate over-fitting of model caused by the task gap between pre-training and recommendation. Result The experimental results on EMRs from medical and health institutions in Hainan Province, China show that the proposed MR-KPA model can effectively improve the accuracy of medication recommendation on small-scale longitudinal EMR data compared with existing representative methods. Conclusion The advantages of the proposed MR-KPA are mainly attributed to knowledge enhancement based on ontology embedding, the pre-training visit model and adversarial training. Each of these three optimizations is very effective for improving the capability of medication recommendation on small-scale longitudinal EMR data, and the pre-training visit model has the most significant improvement effect. These three optimizations are also complementary, and their integration makes the proposed MR-KPA model achieve the best recommendation effect." @default.
- W4312114902 created "2023-01-04" @default.
- W4312114902 creator A5035091685 @default.
- W4312114902 creator A5036375505 @default.
- W4312114902 creator A5047557442 @default.
- W4312114902 creator A5050964791 @default.
- W4312114902 creator A5061568119 @default.
- W4312114902 creator A5081340408 @default.
- W4312114902 creator A5082529341 @default.
- W4312114902 date "2022-12-19" @default.
- W4312114902 modified "2023-10-18" @default.
- W4312114902 title "MR-KPA: medication recommendation by combining knowledge-enhanced pre-training with a deep adversarial network" @default.
- W4312114902 cites W1682403713 @default.
- W4312114902 cites W1986159170 @default.
- W4312114902 cites W1993752995 @default.
- W4312114902 cites W2019145856 @default.
- W4312114902 cites W2557074642 @default.
- W4312114902 cites W2560078596 @default.
- W4312114902 cites W2560647685 @default.
- W4312114902 cites W2744140371 @default.
- W4312114902 cites W2887853521 @default.
- W4312114902 cites W2905471643 @default.
- W4312114902 cites W2924476266 @default.
- W4312114902 cites W2944774301 @default.
- W4312114902 cites W2945734765 @default.
- W4312114902 cites W2953356739 @default.
- W4312114902 cites W2964109414 @default.
- W4312114902 cites W2965570621 @default.
- W4312114902 cites W3009457452 @default.
- W4312114902 cites W3011408960 @default.
- W4312114902 cites W3015158377 @default.
- W4312114902 cites W3034942609 @default.
- W4312114902 cites W3035011799 @default.
- W4312114902 cites W3035153870 @default.
- W4312114902 cites W3041319475 @default.
- W4312114902 cites W3043314599 @default.
- W4312114902 cites W3092198864 @default.
- W4312114902 cites W3097232347 @default.
- W4312114902 cites W3097904695 @default.
- W4312114902 cites W3105082862 @default.
- W4312114902 cites W3111549438 @default.
- W4312114902 cites W3115195983 @default.
- W4312114902 cites W3128022109 @default.
- W4312114902 cites W3129347641 @default.
- W4312114902 cites W3133650345 @default.
- W4312114902 cites W3160137267 @default.
- W4312114902 cites W3161194468 @default.
- W4312114902 cites W3166996592 @default.
- W4312114902 cites W3169726359 @default.
- W4312114902 cites W3170549803 @default.
- W4312114902 cites W3175604467 @default.
- W4312114902 cites W3175928291 @default.
- W4312114902 cites W3193684252 @default.
- W4312114902 cites W3201166523 @default.
- W4312114902 cites W3202019878 @default.
- W4312114902 cites W3210002128 @default.
- W4312114902 cites W4200046635 @default.
- W4312114902 cites W4206985727 @default.
- W4312114902 cites W4220894606 @default.
- W4312114902 cites W4225576909 @default.
- W4312114902 doi "https://doi.org/10.1186/s12859-022-05102-1" @default.
- W4312114902 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36536291" @default.
- W4312114902 hasPublicationYear "2022" @default.
- W4312114902 type Work @default.
- W4312114902 citedByCount "0" @default.
- W4312114902 crossrefType "journal-article" @default.
- W4312114902 hasAuthorship W4312114902A5035091685 @default.
- W4312114902 hasAuthorship W4312114902A5036375505 @default.
- W4312114902 hasAuthorship W4312114902A5047557442 @default.
- W4312114902 hasAuthorship W4312114902A5050964791 @default.
- W4312114902 hasAuthorship W4312114902A5061568119 @default.
- W4312114902 hasAuthorship W4312114902A5081340408 @default.
- W4312114902 hasAuthorship W4312114902A5082529341 @default.
- W4312114902 hasBestOaLocation W43121149021 @default.
- W4312114902 hasConcept C108583219 @default.
- W4312114902 hasConcept C111919701 @default.
- W4312114902 hasConcept C119857082 @default.
- W4312114902 hasConcept C124101348 @default.
- W4312114902 hasConcept C138885662 @default.
- W4312114902 hasConcept C154945302 @default.
- W4312114902 hasConcept C207685749 @default.
- W4312114902 hasConcept C2776401178 @default.
- W4312114902 hasConcept C37736160 @default.
- W4312114902 hasConcept C41008148 @default.
- W4312114902 hasConcept C41895202 @default.
- W4312114902 hasConcept C59404180 @default.
- W4312114902 hasConcept C98045186 @default.
- W4312114902 hasConceptScore W4312114902C108583219 @default.
- W4312114902 hasConceptScore W4312114902C111919701 @default.
- W4312114902 hasConceptScore W4312114902C119857082 @default.
- W4312114902 hasConceptScore W4312114902C124101348 @default.
- W4312114902 hasConceptScore W4312114902C138885662 @default.
- W4312114902 hasConceptScore W4312114902C154945302 @default.
- W4312114902 hasConceptScore W4312114902C207685749 @default.
- W4312114902 hasConceptScore W4312114902C2776401178 @default.
- W4312114902 hasConceptScore W4312114902C37736160 @default.
- W4312114902 hasConceptScore W4312114902C41008148 @default.
- W4312114902 hasConceptScore W4312114902C41895202 @default.
- W4312114902 hasConceptScore W4312114902C59404180 @default.
- W4312114902 hasConceptScore W4312114902C98045186 @default.